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Goals
This document describes the implementation of a 3D engine based on the VRML and X3D
languages.

The VRML language is used to define 3D worlds. X3D is simply VRML 3.0, also supported
by our engine (since May 2008). We will have some introduction to the language in Chapter 1,
Overview of VRML. VRML has many advantages over other 3D languages:

• The specification of the language is open.

• The language is implementation-neutral, which means that it's not “tied” to any particular
rendering method or library. It's suitable for real-time rendering (e.g. using OpenGL or
DirectX), it's also suitable for various software methods like ray-tracing. This neutrality
includes the material and lighting model described in VRML 2.0 specification.

Inventor, an ancestor of the VRML, lacked such neutrality. Inventor was closely tied to
the OpenGL rendering methods, including the OpenGL lighting model.

• The language is quite popular and many 3D authoring programs can import and export
models in this format. Some well-known open-source 3D modeling programs that can
export to VRML are  Blender [http://www.blender3d.org/] and Art Of Illusion [http://
aoi.sourceforge.net/]. White Dune [http://wdune.ourproject.org/] is a modeller especially
oriented towards VRML.

• The language can describe geometry of 3D objects with all typical properties like materials,
textures and normal vectors. More advanced features like multi-texturing, environment
cube map texturing, shaders (in GLSL, NVidia Cg, HLSL) are also available in newest
version (X3D).

• The language is not limited to 3D objects. Other important environment properties, like
lights, the sky, the fog, viewpoints, collision properties and many other can be expressed.
Events mechanism allows to describe animations and user interactions with the scene.

• The language is easy to extend. You can easily add your own nodes and fields (and I did,
see  the list of my VRML extensions [https://castle-engine.io/x3d_extensions.php]).

Implementation goals were to make an engine that

• Uses VRML / X3D. Some other 3D file formats are also supported (like 3DS, MD3, Wave-
front OBJ and Collada) by silently converting them to VRML/X3D graph.

• Allows to make a general-purpose VRML browser. See  view3dscene [https://castle-en-
gine.io/view3dscene.php].

• Allows to make more specialized programs, that use the engine and VRML models as part
of their job. For example, a game can use VRML models for various parts of the world:
• Static environment parts (like the ground and the sky) can be stored and rendered as

one VRML model.
• Each creature, each item, each “dynamic” object of the world (door that can open, build-

ing that can explode etc.) can be stored and rendered as a separate VRML model.

When rendering, all these VRML objects can be rendered within the same frame, so that
user sees the complete world with all objects.
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Goals

Example game that uses my engine this way is  “The Castle” [https://castle-engine.io/
castle.php].

• Using the engine should be as easy as possible, but at the same time OpenGL rendering
must be as fast as possible. This means that a programmer gets some control over how the
engine will optimize given VRML model (or part of it). Different world parts may require
entirely different optimization methods:
• static parts of the scene,
• parts of the scene that move (or rotate or scale etc.) only relatively to the static parts,
• parts of the scene that frequently change inside (e.g. a texture changes or creature's arm

rotates).

All details about optimization and animation methods will be given in later chapters (see
Chapter 6, OpenGL rendering and Chapter 7, Animation).

• The primary focus of the engine was always on 3D games, but, as described above, VRML
models can be used and combined in various ways. This makes the engine suitable for
various 3D simulation programs (oh, and various game types).

• The engine is free open-source software (licensed on GNU General Public License).

• Developed in object-oriented language. For me, the language of choice is ObjectPascal,
as implemented in the Free Pascal compiler [http://www.freepascal.org].
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Chapter 1. Overview of VRML
This chapter is an overview of VRML concepts. It describes the language from the point of
view of VRML author. It teaches how a simple VRML files look like and what are basic
building blocks of every VRML file. It's intended to be a simple tutorial into VRML, not a
complete documentation how to write VRML files. If you want to learn how to write non-
trivial VRML files you should consult  VRML specifications.

This chapter also describes main differences between VRML 1.0, 2.0 (also known as VRML
97) and 3.0 (more widely known as X3D). Our engine currently handles all these VRML
versions. However, at the time of initial writing of this document, our engine supported only
VRML 1.0 and basic 2.0, so more advanced and interesting VRML 2.0 and X3D concepts
are only outlined at the end of this chapter — maybe this will be enhanced some day.

1.1. First example
VRML files are normal text files, so they can be viewed and edited in any text editor. Here's
a very simple VRML 1.0 file that defines a sphere:

#VRML V1.0 ascii

Sphere { }

The first line is a header. It's purpose is to identify VRML version and encoding used. Over-
simplifying things a little, every VRML 1.0 file will start with the exact same line: #VRML
V1.0 ascii.

After the header comes the actual content. Like many programming languages, VRML lan-
guage is a free-form language, so the amount of whitespace in the file doesn't really matter.
In the example file above we see a declaration of a node called Sphere. “Nodes” are the
building blocks of VRML: every VRML file specifies a directed graph of nodes. After spec-
ifying the node name (Sphere), we always put an opening brace (character {), then we
put a list of fields and children nodes of our node, and we end the node by a closing brace
(character }). In our simple example above, the Sphere node has no fields specified and
no children nodes.

The geometry defined by this VRML file is a sphere centered at the origin of coordinate
system (i.e. point (0, 0, 0)) with a radius 1.0.

1. Why the sphere is centered at the origin?

Spheres produces by a Sphere node are always centered at the origin — that's defined
by VRML specifications. Don't worry, we can define spheres centered at any point, but to
do this we have to use other nodes that will move our Sphere node — more on this later.

2. Why the sphere radius is 1.0?

This is the default radius of spheres produced by Sphere node. We could change it by
using the radius field of a Sphere node — more on this later.

Since the material was not specified, the sphere will use the default material properties. These
make a light gray diffuse color (expressed as (0.8, 0.8, 0.8) in RGB) and a slight ambient
color ((0.2, 0.2, 0.2) RGB).

1
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Figure 1.1. VRML 1.0 sphere example

An equivalent VRML 2.0 file looks like this:

#VRML V2.0 utf8

Shape {
  geometry Sphere { }
}

As you can see, the header line is now different. It indicates VRML version as 2.0 and en-
coding as utf8 1.

In VRML 2.0 we can't directly use a Sphere node. Instead, we have to define a Shape
node and set it's geometry field to our desired Sphere node. More on fields and children
nodes later.

Actually, our VRML 2.0 example is not equivalent to VRML 1.0 version: in VRML 2.0
version sphere is unlit (it will be rendered using a single white color). It's an example of a
general decision in VRML 2.0 specification: the default behavior is the one that is easiest to
render. If we want to make the sphere lit, we have to add a material to it — more on this later.

Figure 1.2. VRML 2.0 sphere example

1VRML 2.0 files are always encoded using plain text in utf8. There was a plan to design other encodings, but it was never realized
for VRML 2.0. VRML 2.0 files distributed on WWW are often compressed with gzip, we can say that it's a “poor-man's binary
encoding”.

X3D (VRML 2.0 successor) filled the gap by specifying three encodings available: “classic VRML encoding” (this is exactly
what VRML 2.0 uses), an XML encoding and a binary encoding. Our engine currently handles XML and classic X3D encoding.
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1.2. Fields
Every VRML node has a set of fields. A field has a name, a type, and a default value. For
example, Sphere node has a field named radius, of type SFFloat, that has a default
value of 1.0.

1.2.1. Field types
There are many field types defined by VRML specification. Each field type specifies a syntax
for field values in VRML file, and sometimes it specifies some interpretation of the field
value. Example field types are:

SFFloat, SFDouble, SFTime

A float value. Syntax is identical to the syntax used in various programming languages,
for example 3.1415926 or 12.5e-3.

X3D added SFDouble type, which should be stored and processed with at least double
precision.

And there's the SFTime field type. It's syntax and internals are equivalent to SFDou-
ble, but it has an added semantic: it specifies a time period or a point in time. In the latter
case, this is the number of seconds passed since the Unix epoch (00:00:00 UTC on 1 Jan-
uary 1970). Although for single-player games, where time is not necessarily tied to the
real-world time, sometimes other interpretations are useful, see my “VRML / X3D time
origin considered uncomfortable” article [https://castle-engine.io/x3d_time_origin_con-
sidered_uncomfortable.php].

SFLong (in VRML 1.0), SFInt32 (in VRML 2.0)

A 32-bit integer value. As you can see, the name was changed in VRML 2.0 to indicate
clearly the range of allowed values.

SFBool

A boolean value. Syntax: one word, either FALSE or TRUE. Note that VRML is case-
sensitive. In VRML 1.0 you could also write the number 0 (for FALSE) or 1 (for TRUE),
but this additional syntax was removed from VRML 2.0 (since it's quite pointless).

SFVec2f, SFVec3f, SFVec4f

Vector of 2, 3 or 4 floating point values. Syntax is to write them as a sequence of SF-
Float values, separated by whitespace. The specification doesn't say how these vectors
are interpreted: they can be positions, they can be directions etc. The interpretation must
be given for each case when some node includes a field of this type.

The 4-component SFVec4f was added in X3D. X3D also added double-precision ver-
sions of these vectors: SFVec2d, SFVec3d, SFVec4d.

SFColor, SFColorRGBA (X3D)

Syntax of SFColor is exactly like SFVec3f, but this field has a special interpretation:
it's an RGB (red, green, blue) color specification. Each component must be between 0.0
and 1.0. For example, this is a yellow color: 1 1 0.
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X3D adds also 4-component type SFColorRGBA, that adds alpha (opacity) value to the
RGB color.

SFRotation

Four floating point values specifying rotation around an axis. First three values specify
an axis, fourth value specifies the angle of rotation (in radians).

SFMatrix3f (X3D), SFMatrix3d (X3D), SFMatrix4f (X3D), SFMatrix4d (X3D),
SFMatrix (VRML 1.0)

3x3 and 4x4 matrix types, in single or double precision. Especially useful when trans-
ferring matrix data to GPU shaders.

VRML 1.0 had also a type named just SFMatrix, this was equivalent to X3D's SF-
Matrix4f.

SFImage

This field type is used to specify image content for PixelTexture node in VRML
2.0 (Texture2 node in VRML 1.0). This way you can specify texture content directly
in VRML file, without the need to reference any external file. You can create grayscale,
grayscale with alpha, RGB or RGB with alpha images this way. This is sometimes com-
fortable, when you must include everything in one VRML file, but beware that it makes
VRML files very large (because the color values are specified in plain text, and they are
not compressed in any way). See VRML specification for exact syntax of this field.

An alternative, often better method to “inline” some file content inside VRML/X3D file is
to use the data: URI [http://en.wikipedia.org/wiki/Data_URI_scheme]. This allows you
to inline file contents everywhere where normallny URI is accepted (for example, you
can use normal ImageTexture and it's url field), so it's more general solution. It's
also more standard (not specific to VRML/X3D at all). And it allows to place compressed
data (e.g. compressed PNG, JPG or any other file format, as specified by the mime type
inside URI). Although compressed data will have to be encoded in base64, so it's not
storage-optimal, but still it's usually much better than SFImage non-compressed format.

The data: URI is supported by most modern VRML/X3D browsers (including every
program using our engine). So it's usually preferred over using SFImage, for all but
the tiniest images.

SFString

A string, enclosed in double quotes. If you want to include double quote in a string,
you have to precede it with the backslash (\) character, and if you want to include the
backslash in a string you have to write two backslashes. For example:

  "This is a string."

  "\"To be or not to be\" said the man."

  "Windows filename is
     c:\\3dmodels\\tree.wrl"

Note that in VRML 2.0 this string can contain characters encoded in utf8 2.

2But also note that our engine doesn't support utf8 yet. In particular, when rendering Text node, the string is treated as a sequence
of 8-bit characters in ISO-8859-1 encoding.
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SFNode

This is a special VRML 2.0 field type that contains other node as it's value (or a special
value NULL). More about this in Section 1.3, “Children nodes”.

All names of field types above start with SF, which stands for “single-value field”. Most of
these field types have a counterpart, “multiple-value field”, with a name starting with MF. For
example MFFloat, MFLong, MFInt32, MFVec2f and MFVec3f. The MF-field value is
a sequence of any number (possibly zero) of single field values. For example, MFVec3f field
specifies any number of 3-component vectors and can be used to specify a set of 3D positions.

Syntax of multiple-value fields is:

1. An opening bracket ([).

2. A list of single field values separated by commas (in VRML 1.0) or whitespaces (in VRML
2.0). Note that in VRML 2.0 comma is also a whitespace, so if you write commas between
values your syntax is valid in all VRML versions.

3. A closing bracket (]). Note that you can omit both brackets if your MF-field has exactly
one value.

1.2.2. Placing fields within nodes
Each node has a set of fields given by VRML specification. VRML file can specify value
of some (maybe all, maybe none) node's fields. You can always leave the value of a field
unspecified in VRML file, and it always is equivalent to explicitly specifying the default
value for given field.

VRML syntax for specifying node fields is simple: within node's braces ({ and }) place
field's name followed by field's value.

1.2.3. Examples
Let's see some examples of specifying field values.

Sphere node has a field named radius of type SFFloat with a default value 1.0. So the
file below is exactly equivalent to our first sphere example in previous section:

#VRML V1.0 ascii

Sphere {
  radius 1
}

And this is a sphere with radius 2.0:

#VRML V1.0 ascii

Sphere {
  radius 2
}

Here's a VRML 2.0 file that specifies a cylinder that should be rendered without bottom and
top parts (thus creating a tube), with a radius 2.0 and height 4.0. Three SFBool fields of
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Cylinder are used: bottom, side, top (by default all are TRUE, so actually we didn't
have to write side TRUE). And two SFFloat fields, radius and height, are used.

Remember that in VRML 2.0 we can't just write the Cylinder node. Instead we have to
use the Shape node. The Shape node has a field geometry of type SFNode. By default,
value of this field is NULL, which means that no shape is actually defined. We can place our
Cylinder node as a value of this field to correctly define a cylinder.

#VRML V2.0 utf8

Shape {
  geometry Cylinder {
    side TRUE
    bottom FALSE
    top FALSE
    radius 2.0
    height 10.0
  }
}

Figure 1.3. Cylinder example, rendered in wireframe mode (because it's
unlit, non-wireframe rendering would look confusing)

Here's a VRML 2.0 file that specifies two points. Just like in the previous example, we had
to use a Shape node and place PointSet node in it's geometry field. PointSet node,
in turn, has two more SFNode fields: coord (that can contain Coordinate node) and
color (that can contain Color node). Coordinate node has a point field of type
MFVec3f — these are positions of defined points. Color node has a color field of type
MFColor — these are colors of points, specified in the same order as in the Coordinate
node.

Note that PointSet and Color nodes have the same field name: color. In the first case,
this is an SFNode field, in the second case it's an MFVec3f field.

#VRML V2.0 utf8

Shape {
  geometry PointSet {
    coord Coordinate { point [ 0 -2 0, 0 2 0 ] }
    color Color { color [ 1 1 0, 0 0 1 ] }
  }

6
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}

Figure 1.4. VRML points example: yellow point at the bottom, blue point
at the top

1.3. Children nodes
Now we're approaching the fundamental idea of VRML: some nodes can be placed as a
children of other nodes. We already saw some examples of this idea in VRML 2.0 examples
above: we placed various nodes inside geometry field of Shape node. VRML 1.0 has a
little different way of specifying children nodes (inherited from Inventor format) than VRML
2.0 and X3D — we will see both methods.

1.3.1. Group node examples
In VRML 1.0, you just place children nodes inside the parent node. Like this:

#VRML V1.0 ascii

Group {
  Sphere { }
  Cube { width 1.5 height 1.5 depth 1.5 }
}

Figure 1.5. A cube and a sphere in VRML 1.0
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Group is the simplest grouping node. It has no fields, and it's only purpose is just to treat
a couple of nodes as one node.

Note that in VRML 1.0 it's required that a whole VRML file consists of exactly one root
node, so we actually had to use some grouping node here. For example the following file is
invalid according to VRML 1.0 specification:

#VRML V1.0 ascii

Sphere { }
Cube { width 1.5 height 1.5 depth 1.5 }

Nevertheless the above example is handled by many VRML engines, including our engine
described in this document.

In VRML 2.0, you don't place children nodes directly inside the parent node. Instead you
place children nodes inside fields of type SFNode (this contains zero (NULL) or one node)
or MFNode (this contains any number (possibly zero) of nodes). For example, in VRML 2.0
Group node has an MFNode field children, so the example file in VRML 2.0 equivalent
to previous example looks like this:

#VRML V2.0 utf8

Group {
  children [
    Shape { geometry Sphere { } }
    Shape { geometry Box { size 1.5 1.5 1.5 } }
  ]
}

Syntax of MFNode is just like for other multiple-valued fields: a sequence of values, inside
brackets ([ and ]).

Example above also shows a couple of other differences between VRML 1.0 and 2.0:

1. In VRML 2.0 we have to wrap Sphere and Box nodes inside a Shape node.

2. Node Cube from VRML 1.0 was renamed to Box in VRML 2.0.

3. Size of the box in VRML 2.0 is specified using size field of type SFVec3f, while in
VRML 1.0 we had three fields (width, height, depth) of type SFFloat.

While we're talking about VRML versions differences, note also that in VRML 2.0 a file
can have any number of root nodes. So actually we didn't have to use Group node in our
example, and the following would be correct VRML 2.0 file too:

#VRML V2.0 utf8

Shape { geometry Sphere { } }
Shape { geometry Box { size 1.5 1.5 1.5 } }

To be honest, we have to point one more VRML difference: as was mentioned before, in
VRML 2.0 shapes are unlit by default. So our VRML 2.0 examples above look like this:
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Figure 1.6. An unlit box and a sphere in VRML 2.0

To make them lit, we must assign a material for them. In VRML 2.0 you do this by placing a
Material node inside material field of Appearance node. Then you place Appear-
ance node inside appearance field of appropriate Shape node. Result looks like this:

#VRML V2.0 utf8

Group {
  children [
    Shape {
      appearance Appearance { material Material { } }
      geometry Sphere { }
    }
    Shape {
      appearance Appearance { material Material { } }
      geometry Box { size 1.5 1.5 1.5 }
    }
  ]
}

We didn't specify any Material node's fields, so the default properties will be used. Default
VRML 2.0 material properties are the same as for VRML 1.0: light gray diffuse color and
a slight ambient color.

As you can see, VRML 2.0 description gets significantly more verbose than VRML 1.0, but
it has many advantages:

1. The way how children nodes are specified in VRML 2.0 requires you to always write
an SFNode or MFNode field name (as opposed to VRML 1.0 where you just write the
children nodes). But the advantages are obvious: in VRML 2.0 you can explicitly assign
different meaning to different children nodes by placing them within different fields. In
VRML 1.0 all the children nodes had to be treated in the same manner — the only thing
that differentiated children nodes was their position within the parent.

2. As mentioned earlier, the default behavior of various VRML 2.0 parts is the one that is
the easiest to render. That's why the default behavior is to render unlit, and you have to
explicitly specify material to get lit objects.

This is a good thing, since it makes VRML authors more conscious about using features,
and hopefully it will force them to create VRML worlds that are easier to render. In the
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case of rendering unlit objects, this is often perfectly acceptable (or even desired) solution
if the object has a detailed texture applied.

3. Placing the Material node inside the SFNode field of Appearance, and then placing
the Appearance node inside the SFNode field of Shape may seem like a “bondage-
and-discipline language”, but it allows various future enhancements of the language with-
out breaking compatibility. For example you could invent a node that allows to specify
materials using a different properties (like by describing it's BRDF function, useful for
rendering realistic images) and then just allow this node as a value for the material
field.

Scenario described above actually happened. First versions of VRML 97 specification
didn't include geospatial coordinates support, including a node GeoCoordinate. A
node IndexedFaceSet has a field coord used to specify a set of points for geometry,
and initially you could place a Coordinate node there. When specification of geospa-
tial coordinates support was formulated (and added to VRML 97 specification as optional
for VRML browsers), all that had to be changed was to say that now you can place Geo-
Coordinate everywhere where earlier you could use only Coordinate.

4. The Shape node in VRML 2.0 contains almost whole information needed to render given
shape. This means that it's easier to create a VRML rendering engine. We will contrast this
with VRML 1.0 approach that requires a lot of state information in Section 1.5, “VRML
1.0 state”.

1.3.2. The Transform node

Let's take a look at another grouping node: VRML 2.0 Transform node. This node specifies
a transformation (a mix of a translation, a rotation and a scale) for all it's children nodes. The
default field values are such that no transformation actually takes place, because by default
we translate by (0, 0, 0) vector, rotate by zero angle and scale by 1.0 factor. This means that
the Transform node with all fields left as default is actually equivalent to a Group node.

Example of a simple translation:

#VRML V2.0 utf8

Shape {
  appearance Appearance { material Material { } }
  geometry Box { }
}

Transform {
  translation 5 0 0
  children Shape {
    appearance Appearance { material Material { } }
    geometry Sphere { }
  }
}
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Figure 1.7. A box and a translated sphere

Note that a child of a Transform node may be another Transform node. All transfor-
mations are accumulated. For example these two files are equivalent:

#VRML V2.0 utf8

Shape {
  appearance Appearance { material Material { } }
  geometry Box { }
}

Transform {
  translation 5 0 0
  children [
    Shape {
      appearance Appearance { material Material { } }
      geometry Sphere { }
    }

    Transform {
      translation 5 0 0
      scale 1 3 1
      children Shape {
        appearance Appearance { material Material { } }
        geometry Sphere { }
      }
    }
  ]
}

#VRML V2.0 utf8

Shape {
  appearance Appearance { material Material { } }
  geometry Box { }
}

Transform {
  translation 5 0 0
  children Shape {
    appearance Appearance { material Material { } }
    geometry Sphere { }
  }
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}

Transform {
  translation 10 0 0
  scale 1 3 1
  children Shape {
    appearance Appearance { material Material { } }
    geometry Sphere { }
  }
}

Figure 1.8. A box, a translated sphere, and a translated and scaled sphere

1.3.3. Other grouping nodes

• A Switch node allows you to choose only one (or none) from children nodes to be in the
active (i.e. visible, participating in collision detection etc.) part of the scene. This is useful
for various scripts and it's also useful for hiding nodes referenced later — we will see an
example of this in Section 1.4, “DEF / USE mechanism”.

• A Separator and a TransformSeparator nodes in VRML 1.0. We will see what
they do in Section 1.5, “VRML 1.0 state”.

• A LOD node (the name is an acronym for level of detail) specifies a different versions of
the same object. The intention is that all children nodes represent the same object, but with
different level of detail: first node is the most detailed one (and difficult to render, check
for collisions etc.), second one is less detailed, and so on, until the last node has the least
details (it can even be empty, which can be expressed by a Group node with no children).
VRML browser should choose the appropriate children to render based on the distance
between the viewer and designated center point.

• A Collision node is available in VRML 2.0 and X3D. It's very useful to disable colli-
sions for particular shapes (visible but not collidable geometry), or to specify a “proxy”
shape to be used for collisions. “Proxy” can be used to perform collisions with a compli-
cated 3D object by a simpler shape, for example a complicated statue of a human could
be surrounded by a simple box proxy for the sake of collisions. Also, this can be used to
make collidable but invisible geometry.
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1.4. DEF / USE mechanism
VRML nodes may be named and later referenced. This allows you to reuse the same node
(which can be any VRML node type — like a shape, a material, or even a whole group) more
than once. The syntax is simple: you name a node by writing DEF <node-name> before
node type. To reuse the node, just write USE <node-name>. This mechanism is available
in all VRML versions.

Here's a simple example that uses the same Cone twice, each time with a different material
color.

#VRML V2.0 utf8

Shape {
  appearance Appearance {
    material Material { diffuseColor 1 1 0 }
  }
  geometry DEF NamedCone Cone { height 5 }
}

Transform {
  translation 5 0 0
  children Shape {
    appearance Appearance {
      material Material { diffuseColor 0 0 1 } }
    geometry USE NamedCone
  }
}

Figure 1.9. Two cones with different materials

Using DEF / USE mechanism makes your VRML files smaller and easier to author, and it also
allows VRML implementations to save resources (memory, loading time...). That's because
VRML implementation can allocate the node once, and then just copy the pointer to this
node. VRML specifications are formulated to make this approach always correct, even when
mixed with features like scripting or sensors. Note that some nodes can “pull” additional data
with them (for example ImageTexture nodes will load texture image from file), so the
memory saving may be even larger. Consider these two VRML files:

#VRML V2.0 utf8
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Shape {
  appearance Appearance {
    texture DEF SampleTexture
      ImageTexture { url "../textures/test_texture.png" }
  }
  geometry Box { }
}

Transform {
  translation 5 0 0
  children Shape {
    appearance Appearance {
      texture USE SampleTexture
    }
    geometry Sphere { }
  }
}

#VRML V2.0 utf8

Shape {
  appearance Appearance {
    texture ImageTexture { url "../textures/test_texture.png" }
  }
  geometry Box { }
}

Transform {
  translation 5 0 0
  children Shape {
    appearance Appearance {
      texture ImageTexture { url "../textures/test_texture.png" }
    }
    geometry Sphere { }
  }
}

Figure 1.10. A box and a translated sphere using the same texture

Both files above look the same when rendered, but in the first case VRML implementation
loads the texture only once, since we know that this is the same texture node 3.

3 Actually, in the second case, our engine can also figure out that this is the same texture filename and not load the texture twice.
But the first case is much “cleaner” and should be generally better for all decent VRML implementations.
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Note that the first node definition, with DEF keyword, not only names the node, but also
includes it in the file. Often it's more comfortable to first define a couple of named nodes
(without actually using them) and then use them. You can use the Switch node for this —
by default Switch node doesn't include any of it's children nodes, so you can write VRML
file like this:

#VRML V2.0 utf8

Switch {
  choice [
    DEF RedSphere Shape {
      appearance Appearance {
        material Material { diffuseColor 1 0 0 } }
      geometry Sphere { }
    }
    DEF GreenSphere Shape {
      appearance Appearance {
        material Material { diffuseColor 0 1 0 } }
      geometry Sphere { }
    }
    DEF BlueSphere Shape {
      appearance Appearance {
        material Material { diffuseColor 0 0 1 } }
      geometry Sphere { }
    }
    DEF SphereColumn Group {
      children [
        Transform { translation 0 -5 0 children USE RedSphere }
        Transform { translation 0  0 0 children USE GreenSphere }
        Transform { translation 0  5 0 children USE BlueSphere }
      ]
    }
  ]
}

Transform { translation -5 0 0 children USE SphereColumn }
Transform { translation  0 0 0 children USE SphereColumn }
Transform { translation  5 0 0 children USE SphereColumn }

Figure 1.11. Three columns of three spheres

One last example shows a reuse of Coordinate node. Remember that a couple of sec-
tions earlier we defined a simple PointSet. PointSet node has an SFNode field named
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coord. You can place there a Coordinate node. A Coordinate node, in turn, has
a point field of type SFVec3f that allows you to specify point positions. The obvious
question is “Why all this complexity? Why not just say that coord field is of SFVec3f
type and directly include the point positions?”. One answer was given earlier when talking
about grouping nodes: this allowed VRML specification for painless addition of GeoCoor-
dinate as an alternative way to specify positions. Another answer is given by the example
below. As you can see, the same set of positions may be used by a couple of different nodes4.

#VRML V2.0 utf8

Shape {
  appearance Appearance { material Material { } }
  geometry IndexedFaceSet {
    coord DEF TowerCoordinates Coordinate {
      point [
        4.157832 4.157833 -1.000000,
        4.889094 3.266788 -1.000000,
        ......
      ]
    }

    coordIndex [
      63 0 31 32 -1,
      31 30 33 32 -1,
      ......
    ]
  }
}

Transform {
  translation 30 0 0
  children Shape {
    geometry IndexedLineSet {
      coordIndex [
        63 0 31 32 63 -1,
        31 30 33 32 31 -1,
        ......
      ]
      coord USE TowerCoordinates
    }
  }
}

Transform {
  translation 60 0 0
  children Shape {
    geometry PointSet {
      coord USE TowerCoordinates
    }
  }
}

4I do not cite full VRML source code here, as it includes a long list of coordinates and indexes generated by Blender exporter.
See VRML files distributed with this document: full source is in the file examples/reuse_coordinate.wrl.
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Figure 1.12. Faces, lines and point sets rendered using the same
Coordinate node

1.4.1. VRML file as a graph
Now that we know all about children relationships and DEF / USE mechanism, we can grasp
the statement mentioned at the beginning of this chapter: every VRML file is a directed graph
of nodes. It doesn't have cycles, although if we will forget about direction of edges (treat it
as an undirected graph), we can get cycles (because of DEF / USE mechanism).

Note that VRML 1.0 file must contain exactly one root node, while VRML 2.0 file is a
sequence of any number of root nodes. So, being precise, VRML graph doesn't have to be a
connected graph. But actually our engine when reading VRML file with many root nodes just
wraps them in an “invisible” Group node. This special Group node acts just like any other
group node, but it's not written back to the file (when e.g. using our engine to pretty-print
VRML files). This way, internally, we always see VRML file as a connected graph, with
exactly one root node.

1.5. VRML 1.0 state
In previous sections most of the examples were given only in VRML 2.0 version. Partially
that's because VRML 2.0 is just newer and better, so you should use it instead of VRML
1.0 whenever possible. But partially that was because we avoided to explain one important
behavior of VRML 1.0. In this section we'll fill the gap. Even if you're not interested in VRML
1.0 anymore, this information may help you understand why VRML 2.0 was designed the
way it was, and why it's actually better than VRML 1.0. That's because part of the reasons
of VRML 2.0 changes were to avoid the whole issue described here.

Historically, VRML 1.0 was based on Inventor file format, and Inventor file format was de-
signed specifically with OpenGL implementation in mind. Those of you who do any pro-
gramming in OpenGL know that OpenGL works as a state machine. This means that OpenGL
remembers a lot of “global” settings 5. When you want to render a vertex (aka point) in
OpenGL, you just call one simple command (glVertex), passing only point coordinates.
And the vertex is rendered (along with a line or even a triangle that it produces with other
vertexes). What color does the vertex has? The last color specified by glColor call (or

5 Actually, they are remembered for each OpenGL context. And, ideally, they are partially “remembered” on graphic board. But
we limit our thinking here only to the point of view of a typical program using OpenGL.
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glMaterial, mixed with lights). What texture coordinate does it have? Last texture coor-
dinate specified in glTexCoord call. What texture does it use? Last texture bound with
glBindTexture. We can see a pattern here: when you want to know what property our
vertex has, you just have to check what value we last assigned to this property. When we
talk about OpenGL state, we talk about all the “last glColor”, “last glTexCoord” etc.
values that OpenGL has to remember.

Inventor, and then VRML 1.0, followed a similar approach. “What material does a sphere
use?” The one specified in the last Material node. Take a look at the example:

#VRML V1.0 ascii

Group {
  # Default material will be used here:
  Sphere { }

  DEF RedMaterial Material { diffuseColor 1 0 0 }

  Transform { translation 5 0 0 }
  # This uses the last material : red
  Sphere { }

  Transform { translation 5 0 0 }
  # This still uses uses the red material
  Sphere { }

  Material { diffuseColor 0 0 1 }

  Transform { translation 5 0 0 }
  # Material changed to blue
  Sphere { }

  Transform { translation 5 0 0 }
  # Still blue...
  Sphere { }

  USE RedMaterial

  Transform { translation 5 0 0 }
  # Red again !
  Sphere { }

  Transform { translation 5 0 0 }
  # Still red.
  Sphere { }
}
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Figure 1.13. Spheres with various material in VRML 1.0

Similar answers are given for other questions in the form “What is used?”. Let's compare
VRML 1.0 and 2.0 answers for such questions:

• What texture is used?

VRML 1.0 answer: Last Texture2 node.

VRML 2.0 answer: Node specified in enclosing Shape appearance's texture field.

• What coordinates are used by IndexedFaceSet?

VRML 1.0 answer: Last Coordinate3 node.

VRML 2.0 answer: Node specified in coord field of given IndexedFaceSet.

• What font is used by by AsciiText node (renamed to just Text in VRML 2.0)?

VRML 1.0 answer: Last FontStyle node.

VRML 2.0 answer: Node specified in fontStyle field of given Text node.

So VRML 1.0 approach maps easily to OpenGL. Simple VRML implementation can just
traverse the scene graph, and for each node do appropriate set of OpenGL calls. For example,
Material node will correspond to a couple of glMaterial and glColor calls. Tex-
ture2 will correspond to binding prepared OpenGL texture. Visible geometry nodes will
cause rendering of appropriate geometry, and so last Material and Texture2 settings
will be used.

In our example with materials above you can also see another difference between VRML 1.0
and 2.0, also influenced by the way things are done in OpenGL: the way Transform node
is used. In VRML 2.0, Transform affected it's children. In VRML 1.0, Transform node
is not supposed to have any children. Instead, it affects all subsequent nodes. If we would like
to translate last example to VRML 2.0, each Transform node would have to be placed as a
last child of previous Transform node, thus creating a deep nodes hierarchy. Alternatively,
we could keep the hierarchy shallow and just use Transform { translation 5 0
0 ... } for the first time, then Transform { translation 10 0 0 ... }, then
Transform { translation 15 0 0 ... } and so on.

This means that simple VRML 1.0 implementation will just call appropriate matrix transfor-
mations when processing Transform node. In VRML 1.0 there are even more specialized
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transformation nodes. For example a node Translation that has a subset of features of
full Transform node: it can only translate. Such Translation has an excellent, trivial
mapping to OpenGL: just call glTranslate.

There's one more important feature of OpenGL “state machine” approach: stacks. OpenGL
has a matrix stack (actually, three matrix stacks for each matrix type) and an attributes stack.
As you can guess, there are nodes in VRML 1.0 that, when implemented in an easy way, map
perfectly to OpenGL push/pop stack operations: Separator and TransformSepara-
tor. When you use Group node in VRML 1.0, the properties (like last used Material and
Texture2, and also current transformation and texture transformation) “leak” outside of
Group node, to all subsequent nodes. But when you use Separator, they do not leak out:
all transformations and “who's the last material/texture node” properties are unchanged after
we leave Separator node. So simple Separator implementation in OpenGL is trivial:

1. At the beginning, use glPushAttrib (saving all OpenGL attributes that can be changed
by VRML nodes) and glPushMatrix (for both modelview and texture matrices).

2. Then process all children nodes of Separator.

3. Then restore state by glPopAttrib and glPopMatrix calls.

TransformSeparator is a cross between a Separator and a Group: it saves on-
ly transformation matrix, and the rest of the state can “leak out”. So to implement this in
OpenGL, you just call glPushMatrix (on modelview matrix) before processing children
and glPopMatrix after.

Below is an example how various VRML 1.0 grouping nodes allow “leaking”. Each column
starts with a standard Sphere node. Then we enter some grouping node (from the left:
Group, TransformSeparator and Separator). Inside the grouping node we change
material, apply scaling transformation and put another Sphere node — middle row always
contains a red large sphere. Then we exit from grouping node and put the third Sphere
node. How does this sphere look like depends on used grouping node.

#VRML V1.0 ascii

Separator {
  Sphere { }
  Transform { translation 0 -3 0 }
  Group {
    Material { diffuseColor 1 0 0 }
    Transform { scaleFactor 2 2 2 }
    Sphere { }
  }
  # A Group, so both Material change and scaling "leaks out"
  Transform { translation 0 -3 0 }
  Sphere { }
}

Transform { translation 5 0 0 }

Separator {
  Sphere { }
  Transform { translation 0 -3 0 }
  TransformSeparator {
    Material { diffuseColor 1 0 0 }
    Transform { scaleFactor 2 2 2 }
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    Sphere { }
  }
  # A TransformSeparator, so only Material change "leaks out"
  Transform { translation 0 -3 0 }
  Sphere { }
}

Transform { translation 5 0 0 }

Separator {
  Sphere { }
  Transform { translation 0 -3 0 }
  Separator {
    Material { diffuseColor 1 0 0 }
    Transform { scaleFactor 2 2 2 }
    Sphere { }
  }
  # A Separator, so nothing "leaks out".
  # The last sphere is identical to the first one.
  Transform { translation 0 -3 0 }
  Sphere { }
}

Figure 1.14. An example how properties “leak out” from various
grouping nodes in VRML 1.0

1.5.1. Why VRML 2.0 is better
There are some advantages of VRML 1.0 “state” approach:

1. It maps easily to OpenGL.

Such easy mapping may be also quite efficient. For example, if two nodes use the same
Material node, we can just change OpenGL material once (at the time Material
node is processed). VRML 2.0 implementation must remember last set Material node
to achieve this purpose.

2. It's flexible. The way transformations are specified in VRML 2.0 forces us often to create
deeper node hierarchies than in VRML 1.0.

And in VRML 1.0 we can easier share materials, textures, font styles and other properties
among a couple of nodes. In VRML 2.0 such reusing requires naming nodes by DEF /
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USE mechanism. In VRML 1.0 we can simply let a couple of nodes have the same node
as their last Material (or similar) node.

But there are also serious problems with VRML 1.0 approach, that VRML 2.0 solves.

1. The argumentation about “flexibility” of VRML 1.0 above looks similar to argumenta-
tion about various programming languages (...programming languages that should remain
nameless here...), that are indeed flexible but also allow the programmer to “shoot himself
in the foot”. It's easy to forget that you changed some material or texture, and accidentally
affect more than you wanted.

Compare this with the luxury of VRML 2.0 author: whenever you start writing a Shape
node, you always start with a clean state: if you don't specify a texture, shape will not
be textured, if you don't specify a material, shape will be unlit, and so on. If you want
to know how given IndexedFaceSet will look like when rendered, you just have to
know it's enclosing Shape node. More precisely, the only things that you have to know
for VRML 2.0 node to render it are

• enclosing Shape node,

• accumulated transformation from Transform nodes,

• and some “global” properties: lights that affect this shape and fog properties. I call them
“global” because usually they are applied to the whole scene or at least large part of it.

On the other hand, VRML 1.0 author or reader (human or program) must carefully analyze
the code before given node, looking for last Material node occurrence etc.

2. The argumentation about “simple VRML 1.0 implementation” misses the point that such
simple implementation will in fact suffer from a couple of problems. And fixing these
problems will in fact force this implementation to switch to non-trivial methods. The prob-
lems include:

• OpenGL stacks sizes are limited, so a simple implementation will limit allowed depth
of Separator and TransformSeparator nodes.

• If we will change OpenGL state each time we process a state-changing node, then we
can waste a lot of time and resources if actually there are no shapes using given property.
For example this code

Separator {
  Texture2 { filename "texture.png" }
}

will trick a naive implementation into loading from file and then loading to OpenGL
context a completely useless texture data.

This seems like an irrelevant problem, but it will become a large problem as soon as
we will try to use any technique that will have to render only parts of the scene. For
example, implementing material transparency using OpenGL blending requires that
first all non-transparent shapes are rendered. Also implementing culling of objects to a
camera frustum will make many shapes in the scene ignored in some frames.

3. Last but not least: in VRML 1.0, grouping nodes must process their children in order, to
collect appropriate state information needed to render each geometry. In VRML 2.0, there
is no such requirement. For example, to render a Group node in VRML 2.0, implemen-
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tation can process and render children nodes in any order. Like said above, VRML 2.0
must only know about current transformation and global things like fog and lights. The
rest of information needed is always contained within appropriate Shape node.

VRML 2.0 implementation can even ignore some children in Group node if it's known
that they are not visible.

Example situations when implementation should be able to freely choose which shapes
(and in what order) are rendered were given above: implementing transparency using
blending, and culling to camera frustum.

More about the way how we solved this problem for both VRML 1.0 and 2.0 in Sec-
tion 3.10, “VRML scene”. More about OpenGL blending and culling to frustum in Sec-
tion 6.4, “VRML scene class for OpenGL”.

1.6. Other important VRML features
Now that we're accustomed with VRML syntax and concepts, let's take a quick look at some
notable VRML features that weren't shown yet.

1.6.1. Inline nodes
A powerful tool of VRML is the ability to include one model as a part of another. In VRML
2.0 we do this by Inline node. It's url field specifies the URL (possibly relative) of VRML
file to load. Note that our engine doesn't actually support URLs right now and treats this just
as a file name.

The content of referenced VRML file is placed at the position of given Inline node. This
means that you can apply transformation to inlined content. This also means that including
the same file more than once is sensible in some situations. But remember the remarks in
Section 1.4, “DEF / USE mechanism”: if you want to include the same file more than once,
you should name the Inline node and then just reuse it. Such reuse will conserve resources.

url field is actually MFString and is a sequence of URL values, from the most to least
preferred one. So VRML browser will try to load files from given URLs in order, until a
valid file will be found.

In VRML 1.0 the node is called WWWInline, and the URL (only one is allowed, it's SF-
String field) is specified in the field name.

When using our engine you can mix VRML/X3D versions and include VRML 1.0 file from
VRML 2.0, or X3D, or the other way around. Moreover, you can include other 3D formats
(like 3DS and Wavefront OBJ) too.

An example:

#VRML V2.0 utf8

DEF MyInline Inline { url "reuse_cone.wrl" }

Transform {
  translation 1 0 0
  rotation 1 0 0 -0.2
  children [
    USE MyInline
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Transform {
  translation 1 0 0
  rotation 1 0 0 -0.2
  children [
    USE MyInline

Transform {
  translation 1 0 0
  rotation 1 0 0 -0.2
  children [
    USE MyInline

Transform {
  translation 1 0 0
  rotation 1 0 0 -0.2
  children [
    USE MyInline

] } ] } ] } ] }

Figure 1.15. Our earlier example of reusing cone inlined a couple of times,
each time with a slight translation and rotation

1.6.2. Texture transformation
VRML allows you to specify a texture coordinate transformation. This allows you to trans-
late, scale and rotate visible texture on given shape.

In VRML 1.0, you do this by Texture2Transform node — this works analogous to
Transform, but transformations are only 2D. Texture transformations in VRML 1.0 accu-
mulate, just like normal transformations. Here's an example:

#VRML V1.0 ascii

Group {
  Texture2 { filename "../textures/test_texture.png" }

  Cube { }

  Transform { translation 3 0 0 }

  Separator {
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    # translate texture
    Texture2Transform { translation 0.5 0.5 }
    Cube { }
  }

  Transform { translation 3 0 0 }

  Separator {
    # rotate texture by Pi/4
    Texture2Transform { rotation 0.7853981634 }
    Cube { }
  }

  Transform { translation 3 0 0 }

  Separator {
    # scale texture
    Texture2Transform { scaleFactor 2 2 }
    Cube { }

    Transform { translation 3 0 0 }

    # rotate texture by Pi/4.
    # Texture transformation accumulates, so this will
    # be both scaled and rotated.
    Texture2Transform { rotation 0.7853981634 }
    Cube { }
  }
}

Figure 1.16. Textured cube with various texture transformations

Remember that we transform texture coordinates, so e.g. scale 2x means that the texture
appears 2 times smaller.

VRML 2.0 proposes a different approach here: We have similar TextureTransform
node, but we can use it only as a value for textureTransform field of Appearance.
This also means that there is no way how texture transformations could accumulate. Here's
a VRML 2.0 file equivalent to previous VRML 1.0 example:

#VRML V2.0 utf8

Shape {
  appearance Appearance {
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    texture DEF SampleTexture
      ImageTexture { url "../textures/test_texture.png" }
  }
  geometry Box { }
}

Transform {
  translation 3 0 0
  children Shape {
    appearance Appearance {
      texture USE SampleTexture
      # translate texture
      textureTransform TextureTransform { translation 0.5 0.5 }
    }
    geometry Box { }
  }
}

Transform {
  translation 6 0 0
  children Shape {
    appearance Appearance {
      texture USE SampleTexture
      # rotate texture by Pi/4
      textureTransform TextureTransform { rotation 0.7853981634 }
    }
    geometry Box { }
  }
}

Transform {
  translation 9 0 0
  children Shape {
    appearance Appearance {
      texture USE SampleTexture
      # scale texture
      textureTransform TextureTransform { scale 2 2 }
    }
    geometry Box { }
  }
}

Transform {
  translation 12 0 0
  children Shape {
    appearance Appearance {
      texture USE SampleTexture
      # scale and rotate the texture.
      # There's no way to accumulate texture transformations,
      # so we just do both rotation and scaling by
      # TextureTransform node below.
      textureTransform TextureTransform {
        rotation 0.7853981634
        scale 2 2
      }
    }
    geometry Box { }
  }
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}

1.6.3. Navigation

You can specify various navigation information using the NavigationInfo node.

• type field describes preferred navigation type. You can “EXAMINE” model, “WALK”
in the model (with collision detection and gravity) and “FLY” (collision detection, but no
gravity).

• avatarSize field sets viewer (avatar) sizes. These typically have to be adjusted for each
world to “feel right”. Although you should note that VRML generally suggests to treat
length 1.0 in your world as “1 meter”. If you will design your VRML world following this
assumption, then default avatarSize will feel quite adequate, assuming that you want
the viewer to have human size in your world. Viewer sizes are used for collision detection.

• Viewer size together with visibilityLimit may be also used to set VRML browsers
Z-buffer near and far clipping planes. This is the case with our engine. By default our
engine tries to calculate sensible values for near and far based on scene bounding box size.

• You can also specify moving speed (speed field), and whether head light is on (head-
light field).

To specify default viewer position and orientation in the world you use Viewpoint node.
In VRML 1.0, instead of Viewpoint you have PerspectiveCamera and Orthogo-
nalCamera (in VRML 2.0 viewpoint is always perspective). Viewpoint and camera nodes
may be generally specified anywhere in the file. The first viewpoint/camera node found in
the file (but only in the active part of the file — e.g. not in inactive children of Switch)
will be used as the starting position/orientation. Note that viewpoint/camera nodes are also
affected by transformation.

Finally, note that my VRML viewer  view3dscene [https://castle-engine.io/view3dscene.php]
has a useful function to print VRML viewpoint/camera nodes ready to be pasted to VRML
file, see menu item “Console” -> “Print current camera node”.

Here's an example file. It defines a viewpoint (generated by view3dscene) and a navi-
gation info and then includes actual world geometry from other file (shown in our earlier
example about inlining).

#VRML V2.0 utf8

Viewpoint  {
  position 11.832 2.897 6.162
  orientation -0.463 0.868 0.172 0.810
}

NavigationInfo {
  avatarSize [ 0.5, 2 ]
  speed 1.0
  headlight TRUE
}

Inline { url "inline.wrl" }
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Figure 1.17. Viewpoint defined for our previous example with multiplied
cones

1.6.4. IndexedFaceSet features
IndexedFaceSet nodes (and a couple of other nodes in VRML 2.0 like Elevation-
Grid) have some notable features to make their rendering better and more efficient:

• You can use non-convex faces if you set convex field to FALSE. It will be VRML brows-
er's responsibility to correctly triangulate them. By default faces are assumed to be convex
(following the general rule that the default behavior is the easiest one to handle by VRML
browsers).

• By default shapes are assumed to be solid which allows to use backface culling when
rendering them.

• If you don't supply pre-generated normal vectors for your shapes, they will be calculated by
the VRML browser. You can control how they will be calculated by the creaseAngle
field: if the angle between adjacent faces will be less than specified creaseAngle, the
normal vectors in appropriate points will be smooth. This allows you to specify preferred
“smoothness” of the shape. In VRML 2.0 by default creaseAngle is zero (so all normals
are flat; again this follows the rule that the default behavior is the easiest one for VRML
browsers). See example below.

• For VRML 1.0 the creaseAngle, backface culling and convex faces settings are con-
trolled by ShapeHints node.

• All VRML shapes have some sensible default texture mapping. This means that you don't
have to specify texture coordinates if you want the texture mapped. You only have to spec-
ify some texture. For IndexedFaceSet the default texture mapping adjusts to shape's
bounding box (see VRML specification for details).

Here's an example of the creaseAngle use. Three times we define the same geometry in
IndexedFaceSet node, each time using different creaseAngle values. The left tower
uses creaseAngle 0, so all faces are rendered flat. Second tower uses creaseAngle
1 and it looks good — smooth where it should be. The third tower uses creaseAngle 4,
which just means that normals are smoothed everywhere (this case is actually optimized in-
side our engine, so it's calculated faster) — it looks bad, we can see that normals are smoothed
where they shouldn't be.

#VRML V2.0 utf8
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Viewpoint  {
  position 31.893 -69.771 89.662
  orientation 0.999 0.022 -0.012 0.974
}

Transform {
  children Shape {
    appearance Appearance { material Material { } }
    geometry IndexedFaceSet {
      coord DEF TowerCoordinates Coordinate {
        point [
          4.157832 4.157833 -1.000000,
          4.889094 3.266788 -1.000000,
          ......
        ]
      }

      coordIndex [
        63 0 31 32 -1,
        31 30 33 32 -1,
        ......
      ]
      creaseAngle 0
    }
  }
}

Transform {
  translation 30 0 0
  children Shape {
    appearance Appearance { material Material { } }
    geometry IndexedFaceSet {
      coordIndex [
        63 0 31 32 -1,
        31 30 33 32 -1,
        ......
      ]
      coord USE TowerCoordinates
      creaseAngle 1
    }
  }
}

Transform {
  translation 60 0 0
  children Shape {
    appearance Appearance { material Material { } }
    geometry IndexedFaceSet {
      coordIndex [
        63 0 31 32 -1,
        31 30 33 32 -1,
        ......
      ]
      coord USE TowerCoordinates
      creaseAngle 4
    }
  }
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}

Figure 1.18. Three towers with various creaseAngle settings

1.6.5. Prototypes
Prototypes

These constructions define new VRML nodes in terms of already available ones. The
idea is basically like macros, but it works on VRML nodes level (not on textual level,
even not on VRML tokens level) so it's really safe.

External prototypes
These constructions define syntax of new VRML nodes, without defining their imple-
mentation. The implementation can be specified in other VRML file (using normal pro-
totypes mentioned above) or can be deduced by particular VRML browser using some
browser-specific means (for example, a browser may just have some non-standard nodes
built-in). If a browser doesn't know how to handle given node, it can at least correctly
parse the node (and ignore it).

For example, many VRML browsers handle some non-standard VRML nodes. If you use
these nodes and you want to make your VRML files at least readable by other VRML
browsers, you should declare these non-standard nodes using external prototypes.

Even better, you can provide a list of proposed implementations for each external proto-
type. They are checked in order, VRML browser should chose the first implementation
that it can use. So you can make the 1st item a URN that is recognized only by your
VRML browser, and indicating built-in node implementation. And the 2nd item may
point to a URL with another VRML file that at least partially emulates the functionality
of this non-standard node, by using normal prototype. This way other VRML browsers
will be able to at least partially make use of your node.

Our engine handles prototypes and external prototypes perfectly (since around Septem-
ber 2007). We have some VRML/X3D extensions (see  Castle Game Engine extensions
list [https://castle-engine.io/x3d_extensions.php]), and they can be declared as external pro-
totypes with URN like "urn:castle-engine.sourceforge.net:node:Kam-
biOctreeProperties". So other VRML browsers should be able to at least parse them.

1.6.6. X3D features
X3D is a direct successor to VRML 2.0. X3D header even openly specifies #X3D V3.0
utf8 (or 3.1, or 3.2) admitting that it's just a 3rd version of VRML.
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X3D is almost absolutely compatible with VRML 2.0, meaning that almost all VRML 2.0
files are also correct X3D files — assuming that we change the header to indicate X3D and
add trivial PROFILE line. Minor incompatible changes include renaming of access speci-
fiers (exposedField becomes inputOutput, eventIn becomes inputOnly etc.),
and changes to some field names (Switch.choice and LOD.level were renamed to
Switch.children and LOD.children, this made the “containerField” mechanism of
X3D XML encoding more useful). There was no revolutionary compatibility break on the
road to X3D, and everything that we said in this chapter about VRML 2.0 applied also to
X3D.

Some of the improvements of X3D:

Encodings
VRML classic encoding is for compatibility with VRML 2.0.

XML encoding allows to validate and process X3D files with XML tools (like XML
Schema, XSLT). It also allows easier implementation, since most programming lan-
guages include XML reading/writing support (usually using the DOM API). So you don't
have to write lexer and parser (like for classic VRML).

Finally, binary encoding (not implemented in our engine yet) allows smaller files and
makes parsing faster.

There is no requirement to support all three encodings in every X3D browser — you
only have to support one. XML encoding is the most popular and probably the simpler to
implement, so this is the suggested choice. All encodings are completely interchangeable,
which means that we can convert X3D files back and forth from any encoding to any
other, and no information is lost. Many tools exist to convert from one encoding to the
other (our own engine can be used to convert between XML and classic encoding, see
https://castle-engine.io/view3dscene.php#section_converting).

Components and profiles
VRML 2.0 standard was already quite large, and implementing full VRML 2.0 browser
was a difficult and long task. At the same time, pretty much everyone who used VRML
for more advanced tasks wanted to extend it in some way. So it seemed that the standard
was large, and it had to grow even larger... clearly, there was a problem.

The first part of the solution in X3D is to break the standard into many small components.
Component is just a part of the specification dealing with particular functionality. The
crucial part of each component are it's nodes, and some specification how these nodes
cooperate with the rest of the scene. For example, there is a component with 2D geometry,
called Geometry2D. There is a component providing high-level shaders (GLSL, HLSL,
Cg) support called Shaders. Currently (as of X3D edition 2) there are 34 components
defined by the specification. Every node is part of some component. Naturally, some
components depend on other components.

Some components are complicated enough to be divided even more — into levels. For
example, implementing component on lower level may mean that some node is only
optionally supported, or maybe some of it's fields may be ignored, or maybe there may
exist some limits on the data. For example, for the Networking component, level 1
means that program must support only local (file://) absolute URLs. For level 2,
additionally http:// must be supported, and URLs may be relative. On level 4 secure
https:// must be additionally supported.
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The author of X3D file can request, at the beginning of X3D file, which components
and on what levels must be supported to handle this file. For example, in classic VRML
encoding lines

COMPONENT Networking:2
COMPONENT NURBS:1

mean that networking component must be support relative and and absolute http://
and file:// URLs and basic NURBS support is required.

Now, the components and levels only divide the standard into small parts. It would be a
nightmare to specify at the beginning of each file all required components. It would also
do no good to compatibility across X3D browsers: if every browser would be allowed
to support any set of any components, we would have no guarantee that even the most
basic X3D file is supported by reasonable X3D browsers. So the second part of the so-
lution are profiles. Profile is basically a set of components and their levels, and some
additional conditions. There are only few profiles (six, as of X3D edition 2), like Core,
Interchange, Interactive and Full. The idea is that when browser claims “I
support Interchange profile”, then we already know quite a lot about what it supports
(Interchange includes most of the static 3D data), and what it possibly doesn't support
(interaction, like non-trivial sensors, is not included in the Interchange profile).

Each X3D file must state at the beginning which profile it requires to operate. For exam-
ple, in classic VRML encoding, the PROFILE line is required, like

PROFILE Interchange

Summing it up, the X3D author specifies first the profile and then optionally any number
of components (and their levels) which must be supported (in addition to features already
requested by the profile). Effectively, X3D browsers can support any components at any
level, but they are also strongly pushed to support some high profile. X3D authors can
request any profile and components combination they want, and are relatively safe to
expect support from most browsers for Interchange or even Interactive profiles.

New graphic features
As said, there are 34 X3D components, surely there are many new interesting nodes, far
too many to actually list them here. You can take a quick look at the X3D specification
table of contents at this point.

OK, some of the more interesting additions (not present in VRML 97 amendment 1), in
my opinion: humanoid animation (H-Anim), programmable shaders, 3D texturing, cube
map environmental texturing, rigid body physics, particle systems.

X3D is supported in our engine since May 2008.

1.6.7. Events mechanism

One of the goals of VRML 97 was to allow creating animated and interactive 3D worlds.
This feature really sets VRML above other 3D formats. We can define basic animations and
interactions in pure VRML language, while also easy and natural integration with scripting
languages is possible.

A couple of things make this working:
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Events
Each node has a set of events defined by the VRML standard6. There are input events,
that can be send to the node (by routes and scripts, we will get to them soon). Input
event provides some value to the node and tells the node to do something. There are
also output events, that are conceptually generated “by the node”, when some situation
occurs. Every event has a type, just like a VRML field. This type says what values can
this event receive (input event) or send (output event). Specification says what events
are available, and what do they actually do.

For example, Viewpoint node has an input set_bind event of SFBool type. When
you send a TRUE to this event, then the viewpoint becomes the current viewpoint, making
camera jump to it. Thus, you can place many Viewpoints in VRML file, and switch
user between them.

As an example of output event, there is a TimeSensor node that continuously sends
time output event (of SFTime type). It sends current time value, in seconds (SFTime
simply contains double-precision floating point value).

Exposed fields
The most natural use for events is to set a field's value (by input event), and to gener-
ate notification when field's value changed (by output event). For example, we have an
input event set_translation for Transform node, and analogous transla-
tion_changed event. Together with translation field, such triple is called an
exposed field.

A lot of fields are marked “exposed” in VRML standard. Analogous to above Trans-
form.translation example, exposed field xxx is a normal field, plus an input event
named set_xxx that sets field's value and generates output event xxx_changed. This
allows events mechanism to change the VRML graph at run-time.

Some fields are not exposed (X3D calls them initializeOnly), the idea is that
VRML browser may need to do some time-consuming preparation to take this field into
account, and it's not very common to change this value once VRML file is loaded. For
example, creaseAngle of IndexedFaceSet is not an exposed field.

Routes
This is really the key idea, tying events mechanism together. A route connects one output
event to some other input event. This means that when source output event is generated,
the destination input event is fired. Destination event receives the value send by source
event, naturally.

For example, consider ProximitySensor, that sends a couple of output events when
camera is within some defined box. In particular, it sends position_changed event
with current viewer position (as SFVec3f value). Let's say we want to make a Cylin-
der that hangs above camera, like a real cylinder hat. We can easily make a cylinder:

DEF MyCylinder Transform {
  # We do not want to define translation field here,

6Some special nodes, like Script and ComposedShader, may also specify additional fields and events in the form of so-
called interface declarations. In this case, each instance of such node may have a different set of fields and events. Like said,
these are quite special and serve a special purpose. For example, ComposedShader fields and events are passed to uniform
variables of GLSL (OpenGL shading language) shader.

These details are not really relevant for our simple overview of event mechanism... For simplicity you can just assume that all
nodes define their set of events, just like they define their fields.
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  # it will be set by route
  children Transform {
    # This translation is to keep cylinder above the player
    # (otherwise player would be inside the cylinder)
    translation 0 2 0
    children Shape {
      geometry Cylinder { }
    }
  }
}

How to make the cylinder move together with the player? We have to connect output
event of ProximitySensor with input event of MyCylinder:

DEF MyProx ProximitySensor { }

ROUTE MyProx.position_changed TO MyCylinder.set_translation

And that's it! As you see, the crucial statement ROUTE connects two events (specifying
their names, qualified by node names). What is important is that routes are completely
independent from VRML file hierarchy, they can freely connect events between different
nodes, no matter where in VRML hierarchy they are. Many routes may lead to a single
input event, many routes may come out from a single output event. Loops are trivially
possible by routes (VRML standard specifies how to avoid them: only one event is per-
mitted to be send along one route during a single timestamp, this guarantees that any
loop will be broken).

Sensor nodes
Exposed events and routes allow to propagate events. But how can we generate some
initial event, to start processing? Sensor nodes answer this. We already saw examples
of TimeSensor and ProximitySensor. There are many others, allowing events
to be generated on object pick, mouse drag, key press, collisions etc. The idea is that
VRML browser does the hard work of detecting situations when given sensor should
be activated, and generates appropriate events from this sensor. Such events may be
connected through routes to other events, thus causing the whole VRML graph to change
because user e.g. clicked a mouse on some object.

The beauty of this is that we can do many interesting things without writing anything that
looks like an imperative programming language. We just declare nodes, connect their
events with routes, and VRML browser takes care of handling everything.

Interpolator nodes
These nodes allow to do animation by interpolation between a set of values. They all
have a set_fraction input field, and upon receiving it they generate output event
value_changed. How the input fraction is translated to the output value is controlled
by two fields: key specifies ranges of fraction values, and keyValue specifies corre-
sponding output values. For example, here's a simple animation of sphere traveling along
the square-shaped path:

#VRML V2.0 utf8

DEF Timer TimeSensor { loop TRUE cycleInterval 5.0 }

DEF Interp PositionInterpolator {
  key      [ 0      0.25       0.5        0.75     1     ]
  keyValue [ 0 0 0  10 0 0     10 10 0    0 10 0   0 0 0 ]
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}

DEF MySphere Transform {
  children Shape {
    geometry Sphere { }
    appearance Appearance { material Material { } }
  }
}

ROUTE Timer.fraction_changed TO Interp.set_fraction
ROUTE Interp.value_changed TO MySphere.set_translation

Whole events mechanism is implemented in our engine since August 2008.

1.6.8. Scripting
Scripting in VRML is very nicely defined on top of events and routes mechanism. The key
VRML node here is the Script node. It's url field specifies the script — it's either an
URL to the file containing actual script contents (MIME type or eventually file extension
will determine the script language), or an inline script (starting with special protocol like
ecmascript: or castlescript:).

Moreover, you can define additional fields and events within Script node. Script node
is special in this regard, since most of the normal VRML nodes have a fixed set of fields and
events. Within Script, each node instance may have different fields and events (some other
VRML nodes use similar syntax, like ComposedShader for uniform variables). These
“dynamic” fields/events are then treated as normal, is particular you can connect them with
other nodes' fields/events, using normal VRML routes syntax. For example:

DEF MyScript Script {

  # Special fields/events for the script.
  inputOnly SFTime touch_time
  initializeOnly SFBool open FALSE
  outputOnly SFTime close_time
  outputOnly SFTime open_time

  # Script contents --- in this case in CastleScript language,
  # specified inline (script content is directly inside VRML file).

  url "castlescript:

function touch_time(value, timestamp)
if (open,
    close_time := timestamp,
    open_time := timestamp);
open := not(open)
"
}

ROUTE SomeTouchSensor.touchTime TO MyScript.touch_time
ROUTE MyScript.close_time TO TimeSensor_CloseAnimation.startTime
ROUTE MyScript.open_time TO TimeSensor_OpenAnimation.startTime

The idea is that you can declare fields within script nodes using standard VRML syntax, and
you route them to/from other nodes using standard VRML routes. The script contents say
only what to do when input event is received, and may generate output events. This way
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the script may be treated like a “black box” by VRML browser: browser doesn't have to
understand (parse, interpret etc.) the particular scripting language, and still it knows how this
script is connected to the rest of VRML scene.

VRML 97 specification includes detailed description of Java and ECMAScript (JavaScript)
bindings. X3D specification pushes this even further, by describing external language inter-
face in a way that is “neutral” to actual programming language (which means that it should
be applicable to pretty much all existing programming languages).

My engine doesn't support ECMAScript or Java scripting for now. But we have two usable
script protocols:

1. compiled: protocol allows you to assign a compiled-in (that is, written in ObjectPascal
and compiled in the program) handler to the script. See  executing compiled-in code on
Script events [https://castle-engine.io/x3d_extensions.php#section_ext_script_compiled]
documentation.

2. castlescript: protocol allows you to use a simple scripting language developed
specifically for our engine. It allows you to receive, process and generate VRML events,
being powerful enough for many scripting needs. Together with nodes like KeySensor
this allows you to write full games/toys in pure VRML/X3D (without the need to compile
anything). See https://castle-engine.io/castle_script.php for full documentation and many
examples.

Scripts are implemented in our engine since October 2008.

1.6.9. More features
Fun fact: this section of the documentation was initially called “Beyond what is implement-
ed”. It was a list of various VRML 97 and X3D features not implemented yet in our en-
gine. But with time, they were all gradually implemented, and the list of missing features got
shorter and shorter... So now we list in this section many features that are implemented, but
are documented elsewhere:

NURBS
NURBS curves and surfaces. Along with interpolators to move other stuff along curves
and surfaces. See NURBS [https://castle-engine.io/x3d_implementation_nurbs.php].

Environmental textures
Textures to simulate mirrors, auto-generated or loaded from files. See cube map texturing
[https://castle-engine.io/x3d_implementation_cubemaptexturing.php].

Shaders
Full access to GPU shaders (OpenGL Shading Language). See shaders [https://castle-en-
gine.io/x3d_implementation_shaders.php].

Clicking and dragging sensors
Sensors to detect clicking and dragging with a mouse. Dragging sensors are particularly
fun to allow user to visually edit the 3D world. See pointing device sensor [https://cas-
tle-engine.io/x3d_implementation_pointingdevicesensor.php].

And much more...
See X3D / VRML [https://castle-engine.io/vrml_x3d.php] for a complete and up-to-date
list of all the X3D / VRML features supported in our engine. Including the standard X3D /
VRML features and our extensions.
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Chapter 2. Scene Manager
The best way to use our engine is through the scene manager. Scene manager knows every-
thing about your 3D world, everything that is needed to perform collision detection, render-
ing and other useful operations. By default, scene manager is also a viewport, that allows
you to actually see the 3D world.

2.1. Scene manager, and basic example
of using our engine

Figure 2.1. Three 3D objects are rendered here: precalculated dinosaur
animation, scripted (could be interactive) fountain animation, and static
tower.

In the simplest case, you just create TCastleWindow instance which gives you a ready-
to-use scene manager inside the TCastleWindow.SceneManager property.

Example code below uses scene manager to trivially make a full 3D model viewer. This
correctly handles collisions, renders in an optimal manner (frustum culling etc.), handles
animations and interactive behavior and generally takes care of everything.

var
  Window: TCastleWindow;
  Scene: TCastleScene;
begin
  Scene := TCastleScene.Create(Application
    { Owner that will free the Scene });
  Scene.Load('models/boxes.x3dv');
  Scene.Spatial := [ssRendering, ssDynamicCollisions];
  Scene.ProcessEvents := true;

  Window := TCastleWindow.Create(Application);
  Window.SceneManager.Items.Add(Scene);
  Window.SceneManager.MainScene := Scene;

  Window.OpenAndRun;
end.

The source code of this program is in examples/3d_rendering_process-
ing/view_3d_model_basic.lpr in engine sources. You can compile it and see
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that it actually works. There's also more extensive demo of scene manager in the ex-
amples/3d_rendering_processing/scene_manager_demos.lpr, and demo
of other engine stuff in examples/3d_rendering_processing/view_3d_mod-
el_advanced.lpr.

This looks nice and relatively straightforward, right? You create 3D object (Scene), and a
window to display the 3D world (Window). It's obvious how to add a second 3D object: just
create Scene2, and add it to Window.SceneManager.Items.

The Lazarus component equivalent to TCastleWindow is called TCastleControl. It
works the same, but you can drop it on a Lazarus form.

A 3D object is anything descending from a base class T3D. All 3D objects in our en-
gine are derived from the T3D class. The most important non-abstract 3D objects are
TCastleScene (3D model, possibly interactive VRML / X3D) and TCastlePrecal-
culatedAnimation (non-interactive animation). There are also some helper 3D objects
(T3DList - list of other 3D objects, and T3DTranslated - translated other 3D object).
And the real beauty is that you can easily derive your own T3D descendants, just override a
couple methods and you get 3D objects that can be visible, can collide etc. in 3D world.

Any T3D descendant may be added to the scene manager Items. In every 3D program you
have an instance of scene manager (TCastleSceneManager class, or your customized
descendant of it), and you add your 3D objects to the scene manager. Scene manager keeps the
whole knowledge about your 3D world, as a tree of T3D objects. Scene manager should also
be present on the Controls list of the window, to receive all the necessary events from your
window, and pass them to all interested 3D objects. If you use TCastleWindow, suggested
in the example above, then scene manager is already created and added to the Controls
list for you. Scene manager also connects your camera, and defines your viewport where 3D
world is rendered through this camera.

2.2. Manage your own scene manager
For more advanced uses, you may use TCastleCustomWindow, which doesn't create
scene manager automatically for you. Instead, you have to create and manage scene manager
instance yourself. You create yourself an instance of TCastleSceneManager (or any
descendant of this class), and you add it to TCastleCustomWindow.Controls. This
is slightly more complex, but also allows more flexibility:

• You can implement and use your own descendant of TCastleSceneManager, over-
riding some methods, and thus making some special rendering tricks.

• Sometimes, you don't want your scene manager to be present on controls all the time. For
example, if you create new scene manager for every level of your game, you probably want
to manually remove/add chosen scene manager instance from/to TCastleCustomWin-
dow.Controls.

Example using this approach:

var
  Window: TCastleWindowCustom;
  SceneManager: TCastleSceneManager;
  Scene: TCastleScene;
begin
  Scene := TCastleScene.Create(Application
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    { Owner that will free the Scene });
  Scene.Load('my_scene.x3d');
  Scene.Spatial := [ssRendering, ssDynamicCollisions];
  Scene.ProcessEvents := true;

  SceneManager := TCastleSceneManager.Create(Application);
  SceneManager.Items.Add(Scene);
  SceneManager.MainScene := Scene;

  Window := TCastleWindowCustom.Create(Application);
  Window.Controls.Add(SceneManager);
  Window.InitAndRun;
end.

This still looks relatively straightforward, right? You create 3D object (Scene), you create
3D world (SceneManager), and a window to display the 3D world (Window). The Lazarus
component equivalent to TCastleWindowCustom is called TCastleControlCus-
tom.

2.3. 2D controls manager
A related topic is the 2D controls management. This is quite similar to the scene manager
approach, except that now it's for 2D and some details are different.

Everything that has to receive window events must derive from TUIControl class.
For example TCastleOnScreenMenu, and TCastleButton are all descendants of
TUIControl. Even the TCastleSceneManager is TUIControl descendant, since
scene manager by default acts as a viewport (2D rectangle) through which you can see your
3D world.

To actually use the TUIControl, you add it to the window's Controls list. If you
use Lazarus component, then you're interested in TCastleControlCustom.Controls
list. If you use our own window library, you're interested in the TCastleWindowCus-
tom.Controls. Once control is added to the controls list, it will automatically receive all
interesting events from our window.

2.4. Custom viewports
A viewport is just a 2D rectangular control that provides a view of 3D world. As said previ-
ously, scene manager by default acts as a viewport. But you can also have additional, custom
viewports, offering simultaneous different views of the same 3D world. This is done by the
TCastleViewport class.

You can have many viewports on the 2D window to observe your 3D world from various
cameras. You can make e.g. split-screen games (each view displays different player), 3D
modeling programs (where you usually like to see the scene from various angles at once), or
just show a view from some special world place (like a security camera).

Your viewports may be placed in any way you like on the screen, they can even be overlap-
ping (one viewport partially obscures another). Each viewport has it's own dimensions, own
camera, but they can share the same 3D world (the same scene manager). Each viewport has
also it's own rendering methods, so you can derive e.g. a specialized viewport that always
shows wireframe view of the 3D world.
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The scene manager itself also acts as a viewport, if DefaultViewport is true. This is
comfortable for simple programs where one viewport is enough. When DefaultView-
port is false, scene manager is merely a container for your 3D world, referenced by custom
viewports (TCastleViewport classes).

See the example in engine sources examples/3d_rendering_processing/mul-
tiple_viewports.lpr for demo of using custom viewports.

Figure 2.2. Simple scene, viewed from various viewports simultaneously.

Figure 2.3. Interactive scene, with shadows and mirors, viewed from
various viewports.
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Chapter 3. Reading, writing,
processing VRML scene graph

This and the following chapters will describe how our VRML engine works. We will describe
used data structures and algorithms. Together this should give you a good idea of what our
engine is capable of, where are it's strengths and weaknesses, and how it's all achieved.

In this document we should not go into details about some ObjectPascal-specific language
constructs or solutions — this would be too low-level stuff, uninteresting from a general
point of view. If you're an ObjectPascal programmer and you want to actually use my en-
gine then you may find it helpful to study  source code [https://castle-engine.io/sources.php]
(especially example programs in examples subdirectories) and  units reference [https://
castle-engine.io/reference.php] while reading this document. If you only want to read this
document, everything that you need is some basic idea about object-oriented programming.

3.1. TVRMLNode class basics
The base class of our engine is the TVRMLNode class, not surprisingly representing a VRML
node. This is an abstract class, for all specific VRML node types we have some descendant
of TVRMLNode defined. Naming convention for non-abstract node classes is like TNode-
Coordinate class for VRML Coordinate node type.

Every VRML node has it's fields available in it's Fields property. You can also access
individual fields by properties named like FdXxx, for example FdPoint is a property of
TNodeCoordinate class that represents point field of Coordinate node.

VRML 1.0 children nodes are accessed by Children and ChildrenCount properties.
For VRML 2.0 this is not needed, since you access all children nodes by accessing appropri-
ate SFNode and MFNode fields. A convenience properties named SmartChildren and
SmartChildrenCount are defined: for “normal” VRML 2.0 grouping nodes (this mostly
means nodes with MFNode field named children) the SmartChildrenXxx properties
operate on appropriate MFNode, for other nodes they operate on VRML 1.0 ChildrenXxx
properties.

Because of DEF / USE mechanism each node may be a children (“children” both in the
VRML 1.0 and 2.0 senses) of more than one node. This means that we cannot use some trivial
destructing strategy. When we destruct some node's instance, we cannot simply destruct all
it's children, because they are possibly used in other nodes. The simple solution to this is
to keep track in each node about it's parents. Each node has properties ParentNodes and
ParentNodesCount that track information about all the nodes that use it in VRML 1.0
style (i.e. on TVRMLNode.Children list). And properties ParentFields and Par-
entFieldsCount that track information about all the SFNode and MFNode fields ref-
erencing this node. The children node is automatically destroyed when it has no parents —
which means that both ParentNodesCount and ParentFieldsCount are zero. Ef-
fectively, we implemented reference-counting. And as a bonus, ParentXxx properties are
sometimes helpful when we want to do some “bottom-to-top” processing of VRML graph
(although this should be generally avoided, “top-to-bottom” processing is much more in the
spirit of the VRML graph).

Classes for VRML nodes specific to particular VRML version get a suffix _1 or _2 repre-
senting their intended VRML version. For example, we have TNodeIndexedFaceSet_1
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(for VRML 1.0) and TNodeIndexedFaceSet_2 (for VRML 2.0) classes. Such nodes al-
ways have their ForVRMLVersion method overridden to indicate in what VRML version
they are allowed to be used. For example, when parser starts reading IndexedFaceSet
node, it creates either TNodeIndexedFaceSet_1 or TNodeIndexedFaceSet_2, de-
pending on VRML version indicated in the file header line. Note that this separation between
VRML versions is done only when reading VRML nodes from file. When processing VRML
nodes graph by code you can freely mix VRML nodes from various VRML versions and ev-
erything will work, including writing nodes back to VRML file (although if you mix VRML
versions too carelessly you may get VRML file that can only be read back by my engine, and
not by other engines that may be limited to only VRML 1.0 or only VRML 2.0). More on
this later in Section 3.2, “The sum of VRML 1.0 and 2.0”.

The result of parsing any VRML file is always a single  TVRMLNode instance representing
the root node of the given file. If the file had more than one root node 1 then our engine
wraps them in an additional Group node. More precisely, additional instance of TVRML-
RootNode is created. It descends from TNodeGroup_2 (but is suitable for all VRML/
X3D versions). This way it can always be treated as 100% normal Group nodes. At the
same time, VRML writing code can take special precautions to not record these “fake” group
nodes back to VRML file.

3.2. The sum of VRML 1.0 and 2.0
Our engine handles both VRML 1.0 and VRML 2.0. As we have seen in Chapter 1, Overview
of VRML, there are important differences between these VRML versions. The way how I de-
cided to handle both VRML versions is the more difficult, but also more complete approach.
Effectively, you have the sum of VRML 1.0 and 2.0 features available.

I decided to avoid trying to create some internal conversions from VRML 1.0 to VRML
2.0, or VRML 2.0 to 1.0, or to some newly invented internal format. I wanted to have a
full, flexible, 100% conforming to VRML 1.0 and VRML 2.0 specifications engine. And
the fact is that any conversion along the way will likely cause problems — ideologically
speaking, that's because there is always something lost, or at least difficult to recover, when
a complicated conversion is done.

Practically here are some reasons why a simple conversion between VRML 1.0 and VRML
2.0 is not possible, in any direction:

1. VRML 2.0 specification authors intentionally wanted to simplify some things that people
(both VRML world authors and VRML browser implementors) thought were unnecessar-
ily complicated in VRML 1.0. This causes problems for a potential converter from VRML
1.0 to 2.0, since it will have trouble to express some VRML 1.0 constructs. For example:

• In VRML 1.0 you can specify multiple materials for a single geometry node. In VRML
2.0 each geometry node uses at most one material. So a potential converter from VRML
1.0 to 2.0 may need to split geometry nodes.

• In VRML 1.0 you can accumulate texture transformations (Texture2Transform
nodes). In VRML 2.0 you can't (you can only place one TextureTransform node
in the Appearance.textureTransform field). So a potential converter must ac-
cumulate texture transformations on it's own. And this is not trivial in a general case,

1Multiple root nodes are allowed in VRML 2.0 specification. Our engine also allows them for VRML 1.0 because it's an extension
often expected by VRML 1.0 creators (humans and programs).
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because you can't directly specify texture transformation matrix in VRML 2.0. Instead
you have to express texture transformation in terms of one translation, one rotation and
one scaling.

• In VRML 1.0 you can specify any 4x4 matrix transformation using MatrixTrans-
formation node. This is not possible at all in VRML 2.0. In VRML 2.0 geometry
transformation must be specified in terms of translations, rotations and scaling.

• In VRML 1.0 you can limit which geometry nodes are affected by PointLight or
SpotLight by placing light nodes at particular points in the node hierarchy. That's
because in VRML 1.0 light nodes work just like other “state changing” nodes: they
affect all subsequent nodes, until blocked by the end of the Separator node.

In VRML 2.0 this doesn't work. You cannot control what parts of the scene are affected
by light nodes by placing light nodes at some particular place in the node hierarchy.
Instead, you have to use radius field of light nodes. This means that some VRML
1.0 tricks are simply not possible.

• OrthographicCamera is not possible to express using VRML 2.0 standard nodes.

Summary: in certain cases translating VRML 1.0 to 2.0 can be very hard or even impossi-
ble. If we want to handle VRML 1.0 perfectly, we can't just write a converter from VRML
1.0 to 2.0 and then define every operation only in terms of VRML 2.0.

2. On the other hand, VRML 2.0 also includes various things not present in VRML 1.0. This
includes many new nodes, that often cannot be expressed at all in VRML 1.0: all sensors,
scripts, interpolators, special things like Collision and Billboard.

Moreover, VRML 2.0 uses SFNode (with possible NULL value) and MFNode, and gen-
erally reduces the state that needs to be remembered when processing VRML graph. This
means that many existing features have to be expressed differently.

For example consider specifying normals for IndexedFaceSet. In VRML 2.0 every-
thing that decides about how generated normals are supplied are the normal and nor-
malIndex fields of given IndexedFaceSet node. We take advantage of the SFNode
field type, and say that whole Normal node may be just placed within normal field
of IndexedFaceSet. So we just keep whole knowledge inside IndexedFaceSet
node.

On the other hand, in VRML 1.0 we have to use the value of last NormalBinding node.
This says whether we should use the last Normal node, and how.

Potential VRML 2.0 to 1.0 converter would have to make a lot of effort to “deconstruct”
VRML 2.0 shape properties back to VRML 1.0 state nodes. This makes conversion diffi-
cult to revert (e.g. when we want to write VRML 2.0 content back to file).

That's why I decided to support in my engine the sum of all VRML features. For example,
VRML 1.0 nodes can have direct children nodes, so I support it (by Children property
of TVRMLNode). VRML 2.0 nodes can have children nodes through SFNode and MFNode
fields, so I support it too. I'm not trying hard to “combine” these two ideas (direct children
nodes and children inside MFNode) into one — I just implement and handle them both 2.

2SmartChildrenXxx properties mentioned in the previous section somewhat combine VRML 1.0 and 2.0 ideas of children
nodes, but they are generally not used except in some small pieces of code where they just make the code shorter.
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In some cases this approach forces me to do more work. For example, for many routines that
calculate bounding boxes of geometry nodes, I had to prepare three routines:

1. Common implementation, as a static procedure inside the X3DNodes unit. This handles
actual calculation and as parameters expects already calculated properties of given shape.
As a simple example, when calculating bounding box of a cube, we expect to get three
parameters describing cube's sizes in X, Y and Z dimension.

2. VRML 1.0 implementation in VRML 1.0-specific node version that calls the common
implementation, after preparing parameters for common implementation. As a simple ex-
ample, TNodeCube_1 (VRML 1.0 cube) just uses it's FdWidth, FdHeight and Fd-
Depth as appropriate sizes.

3. And VRML 2.0 implementation in VRML 2.0-specific node version, that also calls the
common implementation after preparing it's parameters. As a simple example, TNode-
Box (VRML 2.0 cube) accesses three items of it's FdSize field to get the appropriate
sizes.

In our simple example above we talked about a cube, and the whole issue with calculating
three size values differently for VRML 1.0 and 2.0 was actually trivial. But the point is that
for some nodes, like IndexedFaceSet, this is much harder.

For VRML authors this “sum” approach means that when reading VRML 1.0, many VRML
2.0 constructs (that not conflict with anything in VRML 1.0) are allowed, and the other way
around too. That's why you can actually mix VRML 1.0 and 2.0 code in my engine.

Update in 2022: As VRML 1.0 format is now ancient and maintaining it has been some work,
this "sum" feature has been a little "downgraded". It is still possible to use many VRML 2.0 /
X3D nodes in VRML 1.0, but not the other way around. That is, you can no longer use VRML
1.0 nodes in files declared as VRML 2.0 / X3D.

This also means that you have many VRML 2.0 features available in VRML 1.0. VRML 2.0
nodes like Background, Fog and many others, that express features not available at all in
standard VRML 1.0, may be freely placed inside VRML 1.0 models when using our engine.

Also including (using WWWInline or Inline nodes) VRML 1.0 files within VRML 2.0
files (and the other way around) is possible. Each VRML file will be parsed taking into
account it's own header line, and then included content is actually placed as a children node
of including WWWInline or Inline node. So you get VRML graph hierarchy with nodes
mixed from both VRML versions.

3.3. Reading VRML files
You can create a node using CreateParse constructor to parse the node. Or you can ini-
tialize node contents by parsing it using Parse method. However, these both approaches
require you to first prepare appropriate TX3DLexer instance and a list of read node names.

There are comfortable routines like ParseVRMLFile that take care of this for you. They
create appropriate lexer, and may create also suitable TStream instance to read given file
content.

Some details about parsing:

• Our VRML/X3D lexer is a unified lexer for both VRML 1.0, 2.0 and (classic) X3D. Most
of the syntax is identical, minor differences can be handled correctly by a lexer because it
always knows VRML/X3D header line of the given file. So it knows what syntax to expect.

44



Reading, writing, process-
ing VRML scene graph

• VRML/X3D version of the original file is saved in TVRMLRootNode.ForceVersion.
This will be used later when saving. Parser always returns TVRMLRootNode instance,
this keeps some per-file settings like version and X3D profile, components and meta val-
ues.

When saving, you can save any TVRMLNode instance to file. If it is not TVRMLRootN-
ode, or if TVRMLRootNode.HasForceVersion is false, we simply assume it uses
the latest X3D version.

In engine versions <= 2.5.0 we experimented with auto-detecting the suitable VRML/
X3D version for nodes inside, but this mechanism was dropped. It was complicated, and
was failing anyway for complicated cases (nodes from mixed versions, things with routes,
imports, exports etc.). If you want to save a specific VRML/X3D version, it's best to simply
wrap it inside TVRMLRootNode and force desired version explicitly. Modern programs
should target only X3D anyway, as VRML 1.0 is ancient, and VRML 2.0 is old too (from
1997).

• While parsing, ForVRMLVersion method mentioned earlier may be used to decide
which node classes to create based on VRML/X3D version indicated in the file's header
line.

• To properly handle DEF / USE mechanism we keep a list of known node names while
parsing. After a node with DEF clause is parsed we add the node name and it's reference
to NodeNameBinding list that is passed through all parse routines. When a USE clause
is encountered, we just search this list for appropriate node name.

Simple VRML rules of DEF / USE behavior make this approach correct. Remember that
VRML name scope is not modeled after normal programming languages, where name
scope of an identifier is usually limited to the structure (function, class, etc.) where this
identifier is declared. In VRML, name scope always spans to the end of whole VRML file
(or to the next DEF occurrence with the same name, that overrides previous name). Also,
the name scope is always limited to the current file — for example, you cannot use names
defined in other VRML files (that you included by Inline nodes, or that include you).
(Prototypes and external prototypes in VRML 2.0 are designed to allow reusing VRML
code between different VRML files.)

The simple trick with adding our name to NodeNameBinding after the node is fully
parsed prevents creating loops in our graph, in case supplied VRML file is invalid.

3.4. Writing VRML files
SaveToStream method of TVRMLNode class allows you to save node contents (including
children nodes) to any stream. Just like for reading, there are also more comfortable routines
for writing called SaveToVRMLFile.

3.4.1. DEF / USE mechanism when writing

When writing we also keep track of all node names defined to make use of DEF / USE
mechanism. If we want to write a named node, we first check NodeNameBinding list
whether the same name with the same node was already written to file. If yes, then we can
place a USE statement, otherwise we have to actually write the node's contents and add given
node to NodeNameBinding list.
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The advantages of above NodeNameBinding approach is that it always works correctly.
Even for node graphs created by code (as opposed to node graphs read earlier from VRML
file). If node graph was obtained by reading VRML file, then the DEF / USE statements will
be correctly written back to the file, so there will not be any unnecessary size bloat. But note
that in some cases if you created your node graph by code then some node contents may be
output more than once in the file:

1. First of all, that's because we can use DEF / USE mechanism only for nodes that are
named. For unnamed nodes, we will have to write them in expanded form every time.
Even if they were nicely shared in node graph.

2. Second of all, VRML name scope is weak and if you use the same node name twice,
then you may force our writing algorithm to write node in expanded form more than once
(because you “overridden” node name between the first DEF clause and the potential place
for corresponding USE clause).

So if you process VRML nodes graph by code and you want to maximize the chances that
DEF / USE mechanism will be used while writing as much as it can, then you should always
name your nodes, and name them uniquely.

It's not hard to design a general approach that will always automatically make your names
unique. VRML 97 annotated specification suggests adding to the node name an _ (under-
score) character followed by some integer for this purpose. For example, in our engine you
can enumerate all nodes (use EnumerateNode method), and for each node that is used
more than once (you can check it easily: such node will have ParentNodesCount +
ParentFieldsCount > 1) you can append '_' + PtrUInt(Pointer(Node))
to the node name. The only problem with this approach (and the reason why it's not done
automatically) is that you will have to strip these suffixes later, if you will read this file back
(assuming that you want to get the same node names). This can be easily done (just remove
everything following the last underscore in the names of multiply instantiated nodes). But
then if you load the created VRML file into some other VRML browser, you may see these
internal suffixes anyway. That's why my decision was that by default such behavior is not
done. So the generated VRML file will always have exactly the same node names as you
specified.

3.4.2. VRML graph preserving
As was mentioned a couple of times earlier, we do everything to get the VRML scene graph
in memory in exactly the same form as was recorded in VRML file, and when writing the
resulting VRML file also directly corresponds (including DEF / USE mechanism and node
names) to VRML graph in memory.

Actually, there are two exceptions:

1. Inline nodes load their referenced content as their children

2. When reading VRML file with multiple root nodes, we wrap them in additional Group
node

... but we work around these two exceptions when writing VRML files. This means that
reading the scene graph from file and then writing it back produces the file with the exact
same VRML content. But whitespaces (including comments) are removed, when writing we
reformat everything to look nice. So you can simply read and then write back VRML file to
get a simple VRML pretty-printer.
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3.5. Constructing and processing VRML
graph by code

This feature was mentioned a couple of times before. In code, you can simply instantiate any
nodes you want, you can add them as a children of other nodes, you can set their fields as
you like, and so on. Also several methods for enumerating and searching the nodes graph are
provided (like EnumerateNodes and FindNode). See units reference [https://castle-en-
gine.io/reference.php] for details.

I made a decent converter from 3DS, Wavefront OBJ and other file formats to X3D this way.
Once I was able to read these files, it was trivial to construct according VRML/X3D graphs
for them. You can then save constructed VRML/X3D graph to a file (so user can actually
use this converter) and you can further process and render them just like any other VRML
nodes graph (so my engine seamlessly handles 3DS and Wavefront files too, even though
it's almost solely oriented on VRML).

This also allows authors to include 3DS, Wavefront OBJ and other files inside VRML/X3D
files by Inline nodes, making it possible to create scenes in mixed 3D formats.

3.6. Traversing VRML graph
Traversing VRML graph means visiting all active VRML graph nodes in a depth-first search
order. By “active” nodes we mean that only the visible (or affecting the visible) parts of the
graph are browsed — for example, only one child of a Switch and LOD nodes is visited.

You can traverse nodes using Traverse or TraverseFromDefaultState methods.
For each visited node, a callback function will be called.

The most important feature of traversing is that whole VRML state that we talked about in
Section 1.5, “VRML 1.0 state” is collected along the way. For each visited node traverse
callback gets all the information about accumulated transformation, active light nodes and
(meaningful only for VRML 1.0 nodes) currently bound property nodes (material, texture
etc.).

3.7. Geometry nodes features
An important descendant of TVRMLNode is the TVRMLGeometryNode class. This is an
abstract class. All visible VRML nodes (in VRML 1.0 and 2.0) are descendants of this class.

TVRMLGeometryNode class defines a couple of important methods, overridden in each
descendant. All of these methods take a State parameter that describes VRML state at
given point of the graph (this is typically obtained by a traverse callback), since we need this
to have full knowledge about node's geometry.

3.7.1. Bounding boxes
LocalBoundingBox and BoundingBox methods calculate axis-aligned bounding box
of given node.

Axis-aligned bounding box is one of the simplest bounding volume types. It's a cuboid with
axes aligned to base coordinate system X, Y and Z axes. It can be easily expressed as a pair of
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3D points. In our engine we require that the points' coordinates are correctly ordered, i.e. X
position of the first point must always be less or equal than the X position of the second point,
and analogously for Y and Z values. We also have the special value for designating empty
bounding box. And while we're talking about empty bounding boxes, remember to not con-
fuse empty box with a box with zero volume: a box with zero volume still has some position.
For example, a PointSet VRML node with only one point has a non-empty bounding box
with a zero volume. A PointSet without any points has empty bounding box.

I chose axis-aligned bounding boxes just because they are very simple to calculate and oper-
ate on. They have some disadvantages — as with all bounding volumes, there is some com-
promise between how accurately they describe bounding volumes and how comfortable it is
to operate on them. But in practice they just work fast and are enough accurate.

LocalBoundingBox method returns a bounding box of given object without transforming
it (i.e. assuming that State contains an identity transformation). BoundingBox method
takes current transformation into account. Each descendant has to override at least one of
these methods. If you override only LocalBoundingBox then BoundingBox will be
calculated by transforming LocalBoundingBox (which can give poor bounding volume,
much larger than necessary). If you override only BoundingBox then LocalBounding-
Box will be calculated by calling BoundingBox with transformation matrix set to identity
matrix (this can make LocalBoundingBox implementation much slower than a potential
special LocalBoundingBox implementation that knows that there is no transformation,
so no matrix multiplications have to be done).

3.7.2. Triangulating
VerticesCount and TrianglesCount calculate triangles and vertices count of given
geometry.

LocalTriangulate and Triangulate methods are available in the TShape class.
They calculate all the triangles of given geometry. Use TShape.GeometryArrays if
you want the full information about every shape (including indexes, colors, and all the other
information required for efficient rendering).

If you want to control how detailed the triangulation should be:

• Programmers can use DefaultTriangulationSlices, DefaultTriangula-
tionStacks and DefaultTriangulationDivisions global variables.

• VRML / X3D authors can use the Geometry3D component - extensions: custom triangula-
tion fields [https://castle-engine.io/x3d_implementation_geometry3d_extensions.php] in
node to control this.

• Finally, my programs view3dscene [https://castle-engine.io/view3dscene.php] and ray-
hunter [https://castle-engine.io/rayhunter.php] allow you to control this by command-line
options

--detail-quadric-slices <integer>
--detail-quadric-stacks <integer>
--detail-rect-divisions <integer>

3.8. WWWBasePath property
This is a string property that specifies base URL of each node. Actually, for now our engine
doesn't support downloading data using any network protocol, so this is always treated just
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like an absolute path on local file-system. It is always set to the directory of VRML file from
which given node was read. It's used by nodes that reference any external file, like Inline
or ImageTexture. Thanks to this field, all such nodes can always resolve their url fields
with respect to the directory of their file.

For example, assume that inside some directory you have a main VRML file main.wrl and
two subdirectories: textures and inline. Inside textures you have a file my_tex-
ture.png and inside inline you have VRML file textured_box.wrl. Finally, let's
say that you want to include textured box in main.wrl file, so you write

Inline { url "inline/textured_box.wrl" }

Now inside textured_box.wrl you should reference the texture like

ImageTexture { url "../textures/texture.png" }

and everything will work when you open main.wrl VRML file. Moreover, tex-
tured_box.wrl is able to “stand on it's own” too, which means that you can open only
textured_box.wrl and texture will still be properly read.

This is similar to xml:base [http://www.w3.org/TR/xmlbase/] attribute in XML, that was
needed to make including XML files by XInclude and referencing external files from various
elements (like DocBook's imagedata) to cooperate seamlessly.

3.9. Defining your own VRML nodes
At the end it's worth noting that you're not limited to the nodes defined by VRML specifica-
tions and implemented in X3DNodes unit. You can freely define your own TVRMLNode
descendants. All it takes to make them visible is to register them in NodesManager object.
For example, call

NodesManager.RegisterNodeClasses([TNodeMy]);

from your unit's initialization section. You may also want to add it to the AllowedChil-
drenNodes list.

This way you can define specific VRML nodes for a specific programs, without the need to
modify anything within the base units. I used this technique in the  malfunction game [https://
castle-engine.io/malfunction.php] to define special-purpose VRML nodes like Malfunc-
tionLevelInfo and MalfunctionNotMovingEnemy.

3.10. VRML scene
If you want to operate on the VRML graph, for some purposes it's enough to load your scene
to a TVRMLNode instance. This way you know the root node of the scene. Each node points
(within it's Children property and SFNode and MFNode fields) to it's children nodes, so
if you know the root node of the scene, you know the whole scene. TVRMLNode class gives
you many methods to operate on the nodes graph, and sometimes this is all you need.

However, some operations cannot be implemented in TVRMLNode class. The basic reason
is that the node doesn't “know” the state of VRML graph where it is used. Node's state is
affected by other nodes that may be it's parents or siblings. Moreover, a node may be used
many times in the same scene (by DEF / USE mechanism), so it may occur many times in
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a scene with different states. That's why many TVRMLNode methods (like Triangulate
and BoundingBox methods described in Section 3.7, “Geometry nodes features”) require
a parameter State: they are not able to figure it out automatically.

These are the reasons why an additional class, called TCastleSceneCore, was created. It
is essentially just a wrapper around a VRML root node (kept inside it's RootNode property)
adding a lot of useful and comfortable methods to operate and investigate the scene as a
whole.

3.10.1. VRML shape
First, let's introduce a building block for our scene class: a shape. Instance of TShape class.
Shape is basically two pieces of information: a geometry node (TVRMLGeometryNode)
and it's state (TX3DGraphTraverseState). For VRML >= 2.0, this usually corresponds
to a single instance of actual VRML Shape node, that's the reason for it's name.

Shape contains absolutely all the information needed to render and generally deal with this
piece of VRML graph. It's completely independent from other shapes.

For VRML 2.0, some shape features were already available. That's because of smart defini-
tions of children fields of grouping nodes, as explained earlier in Section 1.5.1, “Why
VRML 2.0 is better”: we don't need so much state information in VRML 2.0 and we can
pick children of grouping nodes in any order. Still, our shape provides the more complete
solution: it includes also accumulated transformation matrix and “global” properties (fog and
active lights).

3.10.2. Simple tree of shapes
This is the main property of TCastleSceneCore. The idea is simple: to overcome the
problems with VRML state, we can just use Traverse method from the root node (see Sec-
tion 3.6, “Traversing VRML graph”) and store every geometry node (descendant of TVRML-
GeometryNode, see Section 3.7, “Geometry nodes features”) along with it's state. As a
result we get a simple list of shapes. This list is, to some extent, an alternative “flattened”
representation of the VRML graph.

Actually, we can't really have a completely flat list of shapes. Instead, we create a simple,
usually quite flat tree of shapes, in TCastleSceneCore.Shapes. Reason: some things,
like Switch node, require some processing each time we want to browse the tree (this way,
we keep track of shapes in inactive Switch children, which allows us very fast switching of
Switch.whichChoice, that is: replacing/adding/removing large parts of VRML graph).

So we take VRML nodes graph, and transform it into another graph (shapes tree)... But the
resulting tree is really much simpler, it's just as simple representation of VRML visible things
as you can get.

This way we solve various problems mentioned in Section 1.5, “VRML 1.0 state”: we get
full accumulated VRML state readily available for each shape. Also, given a tree of shapes,
we can pick our shapes in any order, and we can pick any of them. This is crucial for various
OpenGL rendering features and optimizations.

Additional advantage of looking at our shapes tree is that resources completely not used (for
example Texture2 node not used by any node in VRML 1.0) are not present there. They
don't occur in a state of any shape. So unused textures will not be even loaded from their files.
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Finally, remember that in Section 1.5, “VRML 1.0 state” we mentioned a practical problem
of simple VRML 1.0 implementation in OpenGL: OpenGL stack sizes are limited. Our scene
solves this, because there is no unlimited push/pop hierarchy anymore. Features of nodes like
VRML 1.0 Separator and TransformSeparator are already handled at this stage.
And they are handled without using any OpenGL stacks, since this unit can't even depend
on OpenGL. Features of VRML 2.0 Transform nodes that apply transformation to all it's
children are already handled here too.

3.10.3. Events
TCastleSceneCore is responsible for implementing most of the events mechanism of
VRML / X3D. Just set ProcessEvents property to true.

Some underlying parts of events mechanism are in fact implemented at the lower level, that
is inside TVRMLNode class and friends. For example, event routes are instantiated when
reading VRML file and they become attached to VRML graph. So passing events through
routes is already working at this point. Also, exposed events are implemented directly inside
TX3DField. So setting an exposed field by eventIn causes appropriate behavior (chang-
ing field's value and generating proper eventOut).

However, without TCastleSceneCore.ProcessEvents, all these routes and exposed
events are useless, since nothing initially “fires” the event. Routes and exposed events are
mechanisms to process events, but they cannot generate events “on their own”, that is they
generate events only when other events push them to it. The way to make an “initial event” in
VRML / X3D is to use sensor nodes. Various sensor nodes emit events at specified situations,
for example

• TimeSensor fires events continuously when time changes,

• KeySensor fires events when user presses a key within VRML browser,

• TouchSensor and others from “pointing device sensor component” in X3D fire events
when user clicks / drags with mouse,

• ProximitySensor and TransformSensor fire events on collision (of viewer or
normal objects within VRML world) with user-defined boxes in space, thus allowing col-
lision detection to VRML authors.

By setting TCastleSceneCore.ProcessEvents to true (and updating
TCastleSceneCore.WorldTime, TCastleSceneCore.KeyDown and others) you
make sensors work. Thus initial events are generated when appropriate, and routes and ex-
posed events take care of spreading them, changing VRML graph as necessary.

3.10.4. Various comfortable routines
Numerous other features are available in our scene class:

• Methods to calculate bounding box, vertexes count and triangles count of the whole scene.
They work simply by summing appropriate results of all shapes.

• Methods to calculate triangles list (triangulate all shapes in the scene) and to build octrees
for the scene. There are also comfortable properties to store the build octree associated
with given scene — although our engine doesn't limit how you manage the constructed
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octrees, you can create as many octrees for given scene as you want and store them where
you want.

More about octrees in Chapter 4, Octrees.

• Methods to find Viewpoint or camera nodes, transform them, and calculate simple (po-
sition, direction, up) triple describing camera setting.

• Methods to find Fog node and calculate it's transformation.

3.10.5. Caching
Some scene properties are quite time-consuming to calculate. Calculating the tree of shapes
requires traversing whole scene graph. Calculating scene bounding box is even more dif-
ficult, since for each shape we must calculate it's bounding box (in fact calculation of
scene bounding box as implemented simply uses the shapes tree). Obviously we cannot re-
peat these calculations each time we need these values. So the results are cached inside
TCastleSceneCore instance.

Most of the properties are cached: shapes, bounding boxes, vertexes and triangles counts,
fog properties. Even triangles' lists may be cached if you want.

Also various properties for single shapes are cached inside TShape instance: bounding box,
bounding sphere and triangle and vertexes counts. After all, some of these operations are
quite time-consuming by themselves. For example to calculate bounding box of Indexed-
FaceSet we have to iterate over all it's coordinates.

Direct changes to actual VRML nodes are not automatically detected. In
other words cache is not automatically cleared on changes. Instead you
have to manually call TCastleSceneCore.ChangedField (or eventually
TCastleSceneCore.ChangedAll) after changing some parts of the scene. Scene an-
alyzes how this change affects the rendered scene, and invalidates as few as possible parts
of the cache.

For example changes to VRML 1.0 nodes like Texture2 or Material will affect only
the shapes that have these nodes in their state. So the whole shapes tree doesn't need to be
regenerated, also the information about other shapes (like their bounding boxes) is still valid.

For simple scene changes, you can also use TX3DField.Send methods. This will change
the value of the field, and automatically notify all interested scenes. You can also just send
events instead of directly modifying fields, see the next section.

In Section 6.4, “VRML scene class for OpenGL” we will introduce the TCastleScene
class that descends from TCastleSceneCore. It adds various OpenGL methods and
caches various OpenGL resources related to rendering particular scene parts. This means that
our ChangedField method will have even greater impact.

3.10.6. Events and ChangedField notifications
At the low level, passing events works by TX3DEvent.Send method and TX3DEven-
t.OnReceive callbacks. Both input and output events can be send and received: for input
events, it's the outside world (routes, scripts) that sends the event, and handling of the event
is specific to containing node. For output events, it's the other way around: sending the event
is specific to containing node, and the event is received by connected routes.
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When exposed fields are changed through events, TCastleSceneCore takes care to au-
tomatically internally call appropriate ChangedField methods. This means that events
mechanism automatically updates everything as necessary, and you don't have to worry
about it — the VRML world inside TCastleSceneCore will just magically change by
itself, assuming TCastleSceneCore.ProcessEvents is on. This also means that
ChangedField methods implement the “cherry-picking optimizations” when VRML
graph is changed: they know about what changed, and they know how it affects the rest of
the VRML graph, and so they decide what needs to be recalculated. For example, when Co-
ordinate node changed through event, we know that only geometry using this coordinate
node has changed, so only it's resources need to be recomputed. There are a lot of possibilities
to optimize here by using knowledge about what specific node does, what it possibly affects
etc. VRML 2.0 things are easier and probably more optimized in this regard — reasons were
given in Section 1.5, “VRML 1.0 state” and Section 1.5.1, “Why VRML 2.0 is better”.

So we have three methods of changing the field value. Do it directly, like

Field.Value := 666;
Scene.ChangedField(Field);

or do it by sending event, like

Field.EventIn.Send(666);

or use the simplest TX3DField.Send method, that sends an event (or directly changes
value, if events processing is turned off), like

Field.Send(666);

This will trigger all event callbacks, so the field value will change, and everyone interested
will be notified about this: output event of exposed field will be generated and sent along the
routes, and TCastleSceneCore will be notified about the change.
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Chapter 4. Octrees
Octree is a tree structure used to partition a 3D space. Each octree node has eight children
(hence the name “octree”, oct + tree). Our engine uses octrees for a couple of tasks.

4.1. Collision detection
Generally speaking, octree is useful for various collision detection tasks:

1. First of all, for a “normal” collision detection needed in games. That is for checking col-
lisions between the player and the world geometry. The player may be represented by a
sphere, and when the player moves we check that:

• The line segment between the current player position and the new player position does
not collide with the world.

• The sphere surrounding new player position does not collide with the world.

When we detect a collision, we can simply reject player move, or (much better) propose
another, non-colliding new player position. This way the player can “slide” along the wall
when he tries to move into it.

This is done within MoveCollision method of the TTriangleOctree class.

Also, when gravity works, we want the player to preserve some preferred height above
the ground. This allows the player to climb up and down the hills, stairs etc. It is often
called terrain-following. This requires calculating current player height above the ground.
By comparing this height with a preferred height we know whether the player position
should fall down or raise up. This is done by checking for a collision between a ray (that
starts at player's position and is directed down) with the world.

This is done by HeightCollision method of TTriangleOctree class.

2. For ray-tracer, this is the most important data structure. Ray-tracer checks collisions of
rays with the world to calculate it's image. Also when calculating shadows we check for
collision between light point (or a random point on light's surface, in case of surface lights)
and the possibly shadowed geometry point.

This is done by RayCollision and SegmentCollision methods of TTrian-
gleOctree class.

3. When player picks (for example by clicking with mouse) given point on the screen show-
ing 3D scene, we want to know which object from our 3D scene (for example, which
VRML node) he actually picked. So again we want to do collision detection between a ray
(starting at player's position and with direction calculated from player's looking direction,
screen dimensions and picked point coordinates on the screen) and the world.

Note that there are other methods to determine which object player picked. For example
you could employ some OpenGL tricks: rendering in selection mode, or reading color
buffer contents to get results of depth buffer tests. See The OpenGL Programming Guide
- The Redbook [http://www.opengl.org/documentation/red_book/] for details. But once
we have octree already implemented, it is usually easier and less cumbersome to use than
these tricks.
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4. When rendering using OpenGL, we don't want to pass to OpenGL objects that are known
to be invisible to the player. For example, we know that objects outside of the camera
frustum are invisible. In certain cases (when e.g. dense fog is used) we also know that
objects further from player than certain distance are not visible.

This means that we want to check for collision between camera frustum and/or sphere with
the world. This is done by EnumerateCollidingOctreeItems and SphereC-
ollision methods.

More information about how these algorithms are used will be given in Section 6.4,
“VRML scene class for OpenGL”.

4.2. How octree works
Octree is a tree where each internal (non-leaf) node has eight children. Each node spans a
particular space area, expressed as an axis-aligned bounding box (available as Box property
of TOctreeNode). Each node also has a chosen middle point inside this box (available as
MiddlePoint property of TOctreeNode class). This point defines three planes paral-
lel to the base X, Y and Z planes and crossing this point. Each child of given octree node
represents one of the eight space parts that are created by dividing parent space using these
three planes.

Each child, in turn, may be either

1. Another internal node. So it has his own middle point and another eight children. His
middle point must be within the space part that his parent node gave him.

2. Or a leaf, that simply contains actual items that you wanted to store in an octree. What is
an “actual item” depends on with want items you want to calculate collisions using this
octree.

In our engine we have two octree types:

a. TTriangleOctree that keeps triangles

b. TShapeOctree that keeps VRML shapes. Shape is a pair of TVRMLGeometryN-
ode (remember from Section 3.7, “Geometry nodes features” that these are the only
VRML nodes that actually have some geometry visible) and it's State (obtained from
traversing VRML graph).

What happens when given item should be included in more than one children? That is, item
is contained in space part of more than one children?

1. Simple solution is to put this item inside all children where it should be. This means that
we could waste a lot of memory if given item should be present in many leaf nodes, but
this problem can be somewhat cured by just keeping an array of octree items for the whole
octree (like TTriangleOctree.Triangles or TShapeOctree.ShapesList)
and keeping only indexes to this array in octree leafs (ItemsIndices property of TOc-
treeNode).

2. Another possible solution is to keep such problematic item only in the list of items of
internal node, instead of putting it inside children nodes. But each octree node has eight
children, and given item can be contained for example only in two of eight children. In
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this case our collision checking routines would always have to consider this item, while
in fact they should consider it only for a 2/8 part of the space.

That's why my engine doesn't use this approach. Note that some hybrid approach could
be possible here, for example keep the item if it spans more than 4 children nodes and put
it inside children otherwise. This idea remains to be implemented one day... For now our
collision checking is fast enough for all purposes when it's needed in real-time games.

Example below shows an octree constructed by our engine. The sample scene contains two
boxes and a sphere. On the screenshot yellow bounding boxes indicate every internal node
and every non-empty leaf. Whole scene is contained within root node of the tree, so the largest
yellow bounding box corresponds also to the bounding box of the scene. The “lonely” box
(in the foreground) is placed within the two direct children on the root tree node. Left and
right quarter on the image contain only empty children leaves of root node, so their bounding
boxes are not shown. Finally, the interesting things happen in the quarter with a box and
a sphere. Sphere has many triangles, so a detailed octree is constructed around it. Also the
sphere caused a little more detailed octree around the near box.

#VRML V2.0 utf8

Viewpoint  {
  position -10.642 8.193 -5.614
  orientation -0.195 -0.921 -0.336 2.158
}

Transform {
  translation 4 0 1.25
  children Shape {
    appearance DEF ALit Appearance { material Material { } }
    geometry Sphere { }
  }
}

Transform {
  translation 4 0 4
  children Shape {
    appearance USE ALit
    geometry Box { }
  }
}

Transform {
  translation -4 0 -4
  children Shape {
    appearance USE ALit
    geometry Box { }
  }
}
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Figure 4.1. A sample octree constructed for a scene with two boxes and
a sphere

You can view octree like this using  view3dscene [https://castle-engine.io/view3dscene.php].
Just turn on the menu option “View” -> “Show whole octree”. There are also menu commands
to investigate octree nodes only at the particular depth.

4.2.1. Checking for collisions using the octree
Let's assume that you have some reference object (like a sphere or a ray or a line segment
mentioned in the first section) that you want to check for collisions with all items contained
in the octree. You start from the root node — all items, which means “all potential colliders”,
are there. You check with which children of this node your object could possibly collide.
Different object types will require various approaches here. In general, this comes down to
checking for collision between children nodes' boxes and your reference object. For example:

1. For a sphere, you check which child node contains the sphere center. Then you check
with which planes (of the three dividing planes of this node) the sphere collides. This
determines all the children that the sphere can collide with.

Above approach is not as accurate as it could be — since it effectively checks the collision
of the bounding box of the sphere with children boxes. To make it more accurate you can
check whether the middle point of given node is within the sphere. But it's not certain
whether this additional check will make your collision detection faster (because we will
descend into less children nodes) or slower (because we spend time on the additional
check). In practice, this depends on how large spheres you will check for collision —
for small (small in comparison to the world) spheres, this additional check will seldom
eliminate any child and probably will be worthless.

2. For a ray: determine child node where ray start is. Then check for collision between this
ray and three base planes crossing node's middle point. This will let you determine into
which children nodes the ray enters. Similar approach could be taken for the line segment.

3. For a frustum: first note that our engine stores frustum as a 6 plane equations.

The basic approach here is to employ the method of checking for collision between a
plane and a box. To determine collision of a box with a plane you can check 8 box corners
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on which side of the plane they are (simply by checking expression similar to the plane
equation, Ax + Bx + Cz + D >= 0). If all points are on the same side of the plane (and no
point lies precisely on the plane) then there is no collision. This also tells your on which
size of the plane the box is located, in case there is no collision.

In our engine, frustum planes are correctly oriented, so the answer to the question “on
which size of the plane” a box is located is meaningful to us. To check for collision of
frustum with a node, we check 6 frustum planes for collision with this node's box. If box is
on the inside side of every plane, this means that the box is completely inside the frustum.
Otherwise, if the box is on the outside side of at least one plane, then the box is completely
outside of the frustum. Otherwise (which means that box collides with at least one plane,
and it's not outside any plane) we don't really know.

In the last case, we're pretty certain that the box collides somehow with the frustum, so we
assume this. In case of error, nothing terrible will happen: our collision checking routine
using octree will just work a little slower than possible, but it will still be 100% correct.
In practice, in almost all cases our assumption will be true, although some nasty cases are
indeed possible. You can see an example of such case below. This is a side view showing
a frustum and a box. You can see that the box collides with 3 planes and is considered to
be on the inside of the 4th plane (the one at the bottom). You can easily extend this image
to 3D and imagine the remaining 2 frustum planes in such way that they will intersect
the box.

Figure 4.2. A nasty case when a box is considered to be colliding with
a frustum, but in fact it's outside of the frustum

Once you can check with which octree node's children your object collides, you just apply this
process recursively. That is, for each internal node you determine which of it's children may
collide with your reference object, and recursively check for collisions inside these children.
For each leaf node, you just sequentially check all it's items for collision. For example, in
case of a triangle octree, in the leafs you will check for collision between triangles and your
reference object.

What's the time of this collision checking algorithm? Like with all tree structures, the idea
is that the time should be logarithmic. But actually we don't use any advanced techniques
that could ensure that our octree is really balanced. And the fact that items that are put inside
more than one children are effectively multiplied in the octree doesn't help either. However
octrees of real-world models are enough balanced (and multiplication is small enough) to
make collision checking using octrees “logarithmic (i.e. fast) in practice”.
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Some more notes about collision checking using an octree:

• Sometimes all you need is the information that “some collision occurred” (for example
that's enough for shadow detection). Sometimes you want to get the closest collision point
(for example, closest to the ray start, for ray-tracing). The first case can obviously be op-
timized to finish whole algorithm as soon as any collision is found. In the second case you
must always check all items when you process a leaf node (because the items in leaf nodes
are not ordered in any way). But when processing internal nodes it can still be optimized
to not enter some children nodes if collision in earlier child node was found (in cases when
we know that every possible collision in one child node must be closer to ray start than
every possible collision in other node).

• As was mentioned earlier, if an octree item fits into more than one child of given node, we
put it inside every matching children node, thus duplicating information about this item in
many leafs. But this means that we can lose some speed. We can be fooled into checking
more than once for collision between our reference object (like a ray) with the same item,
but placed within a different leaf.

This is not so terribly bad, since we are talking here about tests like checking for collision
between a single ray and a single triangle. So this test is anyway quite fast operation, in
constant time. But still it requires a couple of floating point operations, and it's called very
often by our algorithm, so we want to optimize it.

The solution is called the mailboxes. Each octree item gets a mailbox. Each reference
object (like a ray) gets a unique tag. Before we check for collision between our reference
object and an octree item, we check whether the mailbox has the information about the
collision test result for this object tag. If yes, then we obtain the collision test result from
the mailbox. Otherwise, we perform normal (more time-consuming) test and we store the
test result along with the object tag within the mailbox. This way each item will be tested
for collision with reference object only once. Next time we will just use the mailbox.

This is possible to implement thanks to the fact that we keep indexes to items in octree
nodes, and the actual items are kept in an array for a whole octree. So we can naturally
place our mailboxes in this array.

4.2.2. Constructing octree
A simple algorithm starts with an empty tree, containing one leaf node with no items. Then we
add our items (triangles, VRML shapes etc.) to the octree keeping an assertion that no leaf can
have more than some specified number of items (LeafCapacity property of TOctree
class). When we see that adding another item to some leaf would break this assertion, we
convert the leaf to an internal node with eight children, and we add items (previous leaf items
and the new item that we're trying to add) to newly created children. Of course, each children
gets only the items that are within its space part.

Note that this algorithm doesn't guarantee in any way that a tree is balanced. And we want the
tree to be balanced, otherwise checking for collisions using this tree will be as slow (or even
slower) than just sequentially checking collision with all items. However, for most real-world
models, the items are spread more-or-less evenly across the scene, so in practice our tree is
more-or-less balanced. To prevent the pathological cases that could result in extremely deep
octrees we can add a simple limit on the allowed depth of the tree (MaxDepth property of
TOctree class). When a leaf reaches MaxDepth, we will not split it to an internal node
anymore, no matter how many items does it contain. So the assertion becomes “leafs on
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depth < MaxDepth must have at most LeafCapacity items”. This way the nasty cases
are somewhat bounded — our collision checking using tree cannot be much slower than just
sequentially checking for collision with all contained items.

There is a question how to calculate middle point of each node. The simple and most common
approach is just to calculate it as an actual middle point of the node's box. Root tree node
gets a box equal to the bounding box of our scene. But you could plug here other techniques.
The basic idea is that the tree should be balanced, so ideally the middle point should divide
the node's box into eight parts with equal number of triangles inside.

For some purposes it's helpful to keep in each internal node a list of all items contained within
it's children. This eats more memory, but may allow in some cases to terminate the collision
checking operation faster. For example, when we want to check which octree items are inside
a camera frustum, we often find ourselves in a situation when we know that some octree node
is completely contained within the frustum. If we have all the items' indexes easily accessible
within this internal node, we can avoid having to traverse all children nodes under this node.
This is used by TShapeOctree in our engine.

4.3. Octrees for dynamic worlds
In version 1.6.0 of the engine, the octree structures were much improved to make them suit-
able for dynamic scenes. The crucial idea is to use a 2-level hierarchy of octrees (instead of
a single octree).

1. Each shape has it's own triangle octree, build and stored in local shape coordinates
(TShape.OctreeTriangles). Since everything inside this octree is stored in local
coordinates, nothing has to be updated when merely the transformation of this shape
changes (it's moved, rotated and such). When the local geometry changes, the octree still
has to be rebuild — but now it's only the octree for this particular shape, octrees of other
shapes don't change.

2. There's also a single octree of all scene shapes. Shapes are stored there in world coordi-
nates. Each change of geometry causes the rebuild of this octree, but this is a small octree,
so rebuilding it is usually very fast.

When making a collision query, for example when testing whether a ray (given in world
coordinates) intersects the scene, we start with a normal collision in the shape octree. At the
leaves, we have a list of shapes potentially intersecting this ray. To test ray with each shape,
we transform the ray into shape's local coordinates (this means we need to keep an inverted
matrix of shape transformation, to convert from world space into local space). Then the ray
in local coordinates is checked for collisions with triangle octree inside the shape. After the
testing, we need to transform the returned intersection (if found) back into world coordinates.

I dare to say that this works pretty excellent. Traversing the shape octree must be done effi-
ciently, just like traversing triangles octree — in fact, we simply have TBaseTriangle-
sOctree class that implements the non-leaf traversing algorithms for both tree kinds. Tri-
angle/shape octrees only have to handle what happens in leaf octree nodes. Both octrees use
the mailbox technique to avoid checking the same item more than once during one collision
query. For triangle octree mailboxes save the number of direct triangle vs ray/segment tests.
For shape octree they save the number of shape vs ray/segment tests (so we will have less
queries to local shape octrees, which is quite important saving, this makes query time more
than 2 times faster on some scenes).
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4.3.1. Transforming between world and local co-
ordinates

As noted, we need to know the transformations and inverted transformations of the shapes,
to freely switch between world and local coordinate space. For normal transformations
(Transform node in VRML >= 2.0) we simply calculate the inverted matrix along with the
normal matrix when traversing VRML/X3D graph, so when doing collision query we have
both matrices ready to use. For arbitrary 4x4 matrix transformations (MatrixTransform
node, standard in VRML 1.0, and added as an extension to VRML >= 2.0) we have to actu-
ally calculate matrix inversion. Careful reader will spot here potential problems:

• What if the matrix is not reversible? What if there's a scale with zero factor, for example
a scale (1, 1, 0) that projects shape onto Z=0 plane?

Well, then we'll have a problem... this is simply not solved now, and as far as I know it
would just require special treatment (which is quite difficult, since there may be many such
difficult transforms along the traversing way).

• A minor problem is with arbitrary matrices, as they may change a point into a direction
or the other way around (as we work with homogeneous coordinates, each 3D point is
actually a 4D vector with non-zero 4th component; each 3D direction is a 4D vector with
4th component zero). This is simply detected and no collision assumed — we can't do
anything more sensible for these cases actually. That's why I really like the fact that VRML
>= 2.0 removed MatrixTransform from the standard — forcing authors to express
transformations in terms of only Transform node is a Good Idea.

• Another problem is when we check for collisions with axis-aligned box or sphere. How to
transform an axis-aligned box or sphere by a matrix?

1. An axis-aligned box should turn into an oriented box by a mere rotation. If we also
take into account scaling along the arbitrary axis, you get something that doesn't even
have to be a box. It's a 6-DOP, that is a set of 3 pairs of parallel planes. There are
known routines to detect collisions with such thing, but admittedly they are a little more
involved and, what's more important, much slower than routines dealing with simple
axis-aligned box.

2. A sphere under an arbitrary transformation will turn into an ellipsoid. Ellipsoid is a
sphere with (possibly) non-uniform scale along an arbitrary 3D axis. To make collisions
with it you usually just un-rotate and un-scale the other object (like triangle) and then
make normal intersection with a sphere. Again, this is doable, but is also slower (than
normal, untransformed, sphere routines).

So what's our solution? Just ignore the whole issue. Transform axis-aligned box into an-
other axis-aligned box, possibly enlarging it by the way. Convert sphere into axis-aligned
box, and then transform this into possibly even larger axis-aligned box. This way we input
an axis-aligned box into local sphere's octree. While this looks like a lame solution, it's
also simple and fast. Practice shows that it's “lameness” is totally not noticeable on real
3D scenes. That's because boxes and spheres are used mainly as bounding volumes for
player and creatures. So the fact that they grow slightly larger during collision detection
is not noticeable in practice.

Still, implementing it better, at least using ellipsoids is of course planned some day. It just
doesn't seem desperately needed now.
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4.3.2. The future — dynamic irregular octrees
The goal is to implement one day a really dynamic octree, to avoid rebuilding the shape oc-
tree at all. For details, see the paper Dynamic Irregular Octrees [http://www.cs.nmsu.edu/
CSWS/techRpt/2003-004.pdf] (from the page http://www.cs.nmsu.edu/CSWS/php/techRe-
ports.php?rpt_year=2003) by Joshua Shagam and Joseph J. Pfeiffer. A short summary of the
idea:

• First of all, updating the octree can be done simply by deleting and re-inserting the octree
item.

• During delete and insertion you should try to keep the octree balanced, so leafs may be split
or merged to keep octree limits (maxDepth, leafCapacity in our implementation)
satisfied. Inserting is of course already implemented (that's how we construct the octree),
the delete operation must be done.

• To make the deletion possible in a reasonable time, you have to keep each item only once
in the octree. This means that some items will not be placed at octree leaves, instead they
will be “stuck” at the lowest possible internal node.

Note that this will also make the “mailbox” idea useless, as the only function of “mailbox”
is to save the computation when items are duplicated many times in the octree.

• The fact that some items get “stuck” at internal nodes is generally a bad thing. We want
to move items as deep as possible, to gain from octree traversing. Otherwise the whole
idea of octree becomes useless.

To counter this, we make the octree node planes optional. Since a plane may be “deacti-
vated”, some items may be allowed to go deeper into the octree.

4.4. Similar data structures
There are other tree structures similar to the octree. Generally, octree is the easiest one to
construct. Other tree structures give greater flexibility how the space is partitioned on each
level, but to actually get the significant speed benefit, these trees must be also constructed
in much smarter way.

• kd-tree partitions space at each node by a plane parallel to one of the base planes. In other
words, it uses one plane where octree uses three planes. This allows greater flexibility, for
example it may be more optimal to divide the space more often by a X = const plane than
Y = const. Octree is forced to divide space by all three planes at each node.

If you will use the simple “rotational” strategy (X, Y, Z, then again X, Y, Z and so on) to
choose partitioning axes at each depth, then the kd-tree becomes similar to an octree.

The name kd-tree comes from “k-dimensional tree” term, since kd-tree may be used for
any number of dimensions, not necessarily 3D.

• BSP (Binary Space Partitioning) tree partitions space in each node by a plane. Any plane,
not necessarily parallel to one of the base X, Y, Z planes.

This gives even more flexibility than kd-tree, but it makes constructing optimal BSP trees
much harder (assuming that you want to actually produce a better tree than what can be
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achieved with kd-tree). It also means that at each node you have to check for collision
between your reference object and an arbitrary plane (instead of a plane parallel to one of
the base coordinate system planes), so computations get a little slower than for kd-tree.

Note that BSP tree is suitable for any number of dimensions, just like kd-tree. You just
use different equations to represent hyperplanes in other dimensions.

• Finally, note that the only thing that ties octree to 3 dimensions is actually it's name. The
same approach could be used for any number of dimensions. For N dimensions, each in-
ternal node will have 2N children. For example for 2 dimensions each node has 4 children,
and such tree is called a quadtree.

Note that this approach is inadequate when we have a really large number of dimensions,
because then 2N will be so large that “organizational” data of all tree nodes may eat a lot
of memory. But it is not a problem if we stay within reasonable number of dimensions,
like 2 or 3.

63



Chapter 5. Ray-tracer rendering
This chapter describes our implementation of ray-tracer, along with some related topics.

We don't even try to explain here how ray-tracing algorithms work, as this is beyond the
scope of this document. Moreover, the ray-tracer is not the most important part of our engine
right now (OpenGL real-time rendering is). This means that while our ray-tracer has a couple
of nice and unique features, admittedly it also lacks some common and important ray-tracer
features, and it certainly doesn't even try to compete with many other professional open-
source ray-tracing engines existing.

Many practical details related to using our ray-tracer are mentioned in  rayhunter documen-
tation [https://castle-engine.io/rayhunter.php]. Many sample images generated by this ray-
tracer are available in the  rayhunter gallery [https://castle-engine.io/raytr_gallery.php].

5.1. Using octree
The basic data structure for ray-tracing is an octree based on triangles, that is TTrian-
gleOctree instance. If you want to ray-trace a scene, you have to first build such octree
and pass it to a procedure that does actual ray-tracing. Note that the quality of the octree is
critical to the speed of the ray-tracer. Fast ray-tracer requires much deeper octree, with less
items in leafs (LeafCapacity property) than what is usually sufficient for example for
collision detection in real-time game.

To calculate triangles for your octree you should use the Triangulate method of VRML
geometry nodes. Triangles enumerated by this method should be inserted into the octree.
If you use TCastleSceneCore class to load VRML models (described in Section 3.10,
“VRML scene”) you have a comfortable method CreateTriangleOctree available that
takes care of it all, returning the ready octree for a whole scene.

The Triangulation method is also admittedly responsible for some lacks in our ray-
tracer. For example, ray-tracer doesn't handle textures, because triangulation callback doesn't
return texture coordinates. Also normal vectors are not interpolated because triangulation
callback doesn't return normal vectors at the triangle corners. This is all intended to be fixed
one day, but for now ray-tracer is not that important for our engine.

5.2. Classic deterministic ray-tracer
Classic Whitted-style deterministic ray-tracer is done by TClassicRayTracer class in
RayTracer unit.

Point and directional lights are used, as defined by all normal VRML light nodes. This means
that only hard shadows are available. Algorithm sends one primary ray for each image pixel.
Ray-tracing is recursive, where the ray arrives on some surface we check rays to light sources
and eventually we recursively check refracted ray (when Material has transparency
> 0) and reflected ray (when Material has mirror > 0).

The resulting pixel color is calculated according to VRML 97 lighting equa-
tions [http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/con-
cepts.html#4.14]. This is probably the most important advantage of ray-tracer in our engine:
ability to calculate images conforming precisely to the VRML 97 lighting specification. Ac-
tually, we modified these equations a little, but only because:
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1. I have recursive ray-tracing while VRML 97 specifies only local light model, without a
placeholder for reflected and refracted color.

2. VRML 1.0 SpotLight must be calculated differently, since it uses the dropOf-
fRate field (a cosinus exponent) to specify spot highlight. While VRML 2.0 uses the
beamWidth field (a constant spot intensity area and then a linear drop to the spot bor-
der). So for VRML 1.0 spot lights we use the equations analogous to the OpenGL lighting
equations.

3. The ambient factor is calculated taking into account that standard VRML 1.0 light nodes
don't have the ambientIntensity field. Although, as an extension,  our engine allows
you to specify ambientIntensity to get VRML 2.0 behavior in VRML 1.0 [https://
castle-engine.io/x3d_extensions.php#ext_light_attenuation].

5.3. Path-tracer
Done by TPathTracer class in RayTracer unit.

Surface lights are used: every shape with non-zero emissiveColor is considered a light
emitter. For each image pixel many random paths are checked and final pixel color is the
average color gathered from all paths.

Path length is determined by a given minimal path length and a Russian-roulette parameter.
Every path will have at least the specified minimal length, and then Russian-roulette will
be used to terminate the path. E.g. if you set minimal path length to 3 and Russian-roulette
parameter to 0.5 then 1/2 of all paths will have length 3, 1/4 of all paths will have length 4,
1/8 of all paths will have length 5 etc.

Russian-roulette makes sure that the result is unbiased, i.e. the expected value is the correct
result (the perfect beautiful realistic image). However, Russian-roulette introduces also a
large variance, visible as a noise on the image. That's why forcing some minimal path length
helps. Sensible values for minimal path length are around 1 or 2. Of course, the more the
better, but it will also slow down the rendering. You can set minimal length to 0, then Rus-
sian-roulette will always be used to decide about path termination (expect a lot of noise on
the image!).

Actually our path-tracer does something more than a normal path-tracer should: for every pix-
el it checks PrimarySamplesCount of primary rays, and then each primary ray that hits
something splits into NonPrimarySamplesCount. So in total we check PrimarySam-
plesCount * NonPrimarySamplesCount paths. This optimization comes from the
fact that there is no need to take many PrimarySamplesCount, because all primary rays
hit more-or-less the same thing, since they have very similar direction.

To get really nice results path-tracer requires a different materials description. I added  a
couple of additional fields to Material node to describe physical material properties
(for Phong's BRDF) [https://castle-engine.io/x3d_extensions.php#ext_material_phong_brd-
f_fields]. If these fields are not specified in Material node, path-tracer tries to calculate
them from normal material properties, although this may result in a poor-looking materials.
There's also a program kambi_mgf2inv [https://castle-engine.io/kambi_mgf2inv.php] avail-
able that let's you convert MGF files to VRML 1.0 generating correct values for these addi-
tional Material fields.

Shadow cache is used, this makes path-tracer a little faster. Also you can generate the image
pixels in more intelligent order than just line-by-line: you can use Hilbert or Peano space-
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filling curves. In combination with shadow cache this can make path-tracing faster (shad-
ow cache should hit more often). Although in practice space-filling curves don't make any
noticeable speed difference. Undoubtedly, there are many possibilities how to improve the
speed of our path-tracer, and maybe one day space-filling curves will come to a real use.

5.4. RGBE format
Our ray-tracer can store images in the RGBE format.

RGBE stands for Red + Green + Blue + Exponent. It's an image format developed by Greg
Ward, and used e.g. by Radiance [http://floyd.lbl.gov/radiance/]. Colors in RGBE images
are stored with a very good precision, while not wasting a lot of disk space. Good precision
means that you may be able to expose in the image some details that were not initially visible
for the human eye, e.g. by brightening some areas. Also color components are not clamped
to [0; 1] range — each component can be any large number. This means that even if resulting
image is too bright, and some areas look just like white stains, you can always correct the
image by darkening it or applying gamma correction etc. This is especially important for
images generated by path-tracer.

You can process RGBE images using various Radiance programs. You can also use RGBE
images in all my programs, for example you can view them using  glViewImage [https://
castle-engine.io/glviewimage.php] and you can use them as textures on VRML models.

5.5. Generating light maps
This is a feature closely related to ray-tracer routines, although it doesn't actually involve any
recursive ray-tracing. The idea comes from the realization that we already have a means to
calculate light contribution on a given point in a scene, including checking what lights are
blocked on this point. So we can use these methods to calculate lighting on some surface in-
dependent of the camera (player) position. All it takes is just to remove from lighting equa-
tions all components related to camera, which means just removing the specular component
of lighting equation. We can do it even for any point on a scene (not necessarily a point that
is actually part of any scene geometry), as long as we will provide material properties that
should be assumed by calculation.

What do we get by this? We get the ability to generate textures that contain accumulated
effect of all lights shining on given surface. This includes shadows. We can use such texture
on a surface to get already precomputed lighting with shadows. Of course, the trick will
only work as long as lights are static in the scene and it's not a problem to remove specular
component for given surface. And remember to make the texture large enough — otherwise
user will see that the shadows on the wall are pixelated and the whole nice effect will be gone.

I used this trick to generate ground texture for my toy  lets_take_a_walk [https://castle-en-
gine.io/lets_take_a_walk.php]. Initially I had this model:
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Figure 5.1. lets_take_a_walk scene, side view

Figure 5.2. lets_take_a_walk scene, top view

Using our trick I generated this texture for the ground. Note how the texture includes shadows
of all scene objects. And note how the upper-right part of the texture has a nice brighter area.
Our OpenGL rendering above didn't show this brighter place, because the ground geometry
is poorly triangulated. So OpenGL rendering hit again the problems with Gouraud shading
discussed in detail earlier in Section 3.7.2, “Triangulating”. It's a quite large texture (1024
x 1024 pixels), but any decent OpenGL implementation should be able to handle it without
any problems. In case of problems, I would just split it to a couple of smaller pieces.
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Figure 5.3. Generated ground texture

Finally, resulting model with a ground texture:

Figure 5.4. lets_take_a_walk scene, with ground texture. Side view
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Figure 5.5. lets_take_a_walk scene, with ground texture. Top view.

Such textures may be generated by the gen_light_map program included in the cas-
tle_game_engine/examples/vrml/tools/gen_light_map.lpr file in our
engine source code. The underlying unit responsible for all actual work is called VRML-
LightMap. lets_take_a_walk source code is available too, so you can see there an
example how the gen_light_map program may be called.
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Chapter 6. OpenGL rendering

6.1. VRML lights rendering

6.1.1. Lighting model

When rendering using the OpenGL we try to get results as close as pos-
sible to the VRML 2.0 lighting equations [http://www.web3d.org/x3d/specifica-
tions/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14] and X3D lighting equa-
tions [http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecifi-
cation/Part01/components/lighting.html#Lightingequations]. We set OpenGL lights and ma-
terials properties to achieve the required look.

Note that there are bits when it is not possible to exactly match VRML 2.0 / X3D requirements
with fixed-function rendering:

1. VRML 2.0 / X3D specify the spot light falloff by a beamWidth field. This cannot be
precisely translated to a standard OpenGL spotlight exponent.

Let α be the angle between the spot light's direction and the ray from spot light's position
to the considered geometry point.

• OpenGL spot light uses cosinus drop-off, which means that the light intensity within

the spot cutOffAngle is calculated as a Cos(α)spotExponent.

• VRML 2.0 / X3D have a beamWidth. When α < beamWidth, the light intensity is
constant (1.0). For larger angles, the intensity is linearly interpolated (down to 0.0) until
angle reaches cutOffAngle.

There is just no sensible translation from beamWidth idea to OpenGL spotExponent.

An exception is the case when beamWidth >= cutOffAngle. Then spot has constant inten-
sity, which has be accurately expressed with GL_SPOT_EXPONENT = 0. Fortunately,
this is the default situation for all spot lights.

We have considered an extension to define SpotLight.dropOffRate as an exten-
sion for VRML >= 2.0 lights. With definition like “default value of dropOffRate = -1
means to try to approximate beamWidth, otherwise dropOffRate is used as an exponent”.
But it didn't prove useful enough, especially since it would be our own extension.

Looking at how other VRML/X3D implementations handle this:

• Seems that most of them ignore the issue, leaving spot exponent always 0 and ignoring
beamWidth entirely.

• One implementation http://arteclab.artec.uni-bremen.de/courses/mixed-reality/materi-
al/ARToolkit/ARToolKit2.52vrml/lib/libvrml/libvrml97gl/src/vrml97gl/
old_ViewerOpenGL.cpp checks beamWidth < cutOffAngle and sets spot_exponent to
0 or 1. This is what we were doing in engine versions <= 3.0.0.

• Xj3D (see src/java/org/web3d/vrml/renderer/ogl/nodes/light-
ing/OGLSpotLight.java) sets GL_SPOT_EXPONENT to 0.5 / beamWidth.
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It's not “more precise” in any way, the value 0.5 is just a "rule of thumb" as far as we
know. But at least it allows to control exponent by beamWidth. This is an important
advantage, as you can at least change the drop off rate by changing the beamWidth.
Even if beamWidth is not interpreted following the specification, at least it's interpreted
somehow, and allows to achieve a range of different effects.

• FreeWRL (see http://search.cpan.org/src/LUKKA/FreeWRL-0.14/VRMLRend.pm,
freewrl-1.22.13/src/lib/scenegraph/Component_Lighting.c in
later version) uses approach similar to Xj3D, setting GL_SPOT_EXPONENT to 0.5 /
(beamWidth + 0.1).

For example, this results in
• beamWidth = 0 => GL_SPOT_EXPONENT = 5
• beamWidth = Pi/4 => GL_SPOT_EXPONENT =~ 0.5 / 0.9 =~ 1/2
• beamWidth = Pi/2 => GL_SPOT_EXPONENT =~ 0.5 / 1.67 =~ 1/3

It's similar to Xj3D, and the +0.1 seems to be just to prevent division by (something
close to) zero in case beamWidth is very very small. Unfortunately, this addition also
limits the possible values of GL_SPOT_EXPONENT: it's at most 5 (0.5 / 0.1 = 5, as
beamWidth must be > 0), and sometimes larger values would be useful.

• In our engine current version, we do it like this:
• If beamWidth >= cutOffAngle, then GL_SPOT_EXPONENT is 0.
• Otherwise we follow Xj3D version: GL_SPOT_EXPONENT is 0.5 / max(beamWidth,

epsilon)

If you want to convert VRML 1.0 dropOffRate to VRML 2.0 / X3D beamWidth
precisely:
• If dropOffRate = 0, then leave beamWidth at default Pi/2. This makes beamWidth

>= cutOffAngle (because cutOffAngle must be <= Pi/2 according to spec), which
means no smooth falloff.

• Otherwise beamWidth := 0.5 / (128 * dropOffRate) = 1 / (256 * dropOffRate).

2. The exponential fog of VRML 2.0 also uses different equations than OpenGL exponential
fog and cannot be matched perfectly. See VRML and OpenGL specifications for details.

3. Fixed-function renderer uses Gouraud shading, with it's limitations.

Shader pipeline overcomes above problems. We program spot falloff ourselves in GLSL,
honoring beamWidth correctly. We also do per-pixel lighting calculation (Phong shading).
See lighting [https://castle-engine.io/x3d_implementation_lighting.php].

You can also use classic ray-tracer of our engine to see the correct lighting.

6.1.2. Rendering lights
VRML/X3D lights are translated to the appropriate OpenGL calls using the TGLRender-
erLights class. This is used internally by the TGLRenderer discussed in next sections.
For now if you implement custom OpenGL rendering of 3D stuff, for have to also implement
custom handling of OpenGL lights. (This is scheduled to be improved in engine 2.6.0, by
making an instance of TGLRendererLights more widely available.)

When you render 3D models using our engine classes, like TCastleScene, every-
thing related to lights is automatically taken care of. All lights (including the head-
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light, see https://castle-engine.io/x3d_extensions.php#section_ext_headlight) can be de-
scribed and animated inside the VRML/X3D model. Programmers can also control
lights by code. Some useful things are TCastleSceneCore.HeadlightOn and
TCastleSceneCore.CustomHeadlight to control the headlight of given scene.
You can also control headlight globally by overriding the viewport and scene manag-
er method TCastleAbstractViewport.Headlight. TCastleSceneCore.At-
tributes.UseSceneLights controls normal scene lights.

To use main scene lights on other 3D objects as well, you have a comfort-
able TCastleAbstractViewport.UseGlobalLights. You can also override
TCastleAbstractViewport.InitializeLights. For example, in games you
may want to render various 3D things: for example you have one mostly static 3D model for
level and various creature models. And it may be desirable to use level lights for everything.
Using TCastleAbstractViewport.UseGlobalLights = true does this for you.

I use this technique in my games. For example see  “The Castle” [https://castle-engine.io/
castle.php] levels.

6.2. Geometry arrays
The key moment of our rendering process is the TGeometryArrays class. An instance
of this class stores all the per-vertex information about the given VRML/X3D shape. For
every VRML/X3D shape, we can generate an instance of TGeometryArrays by appropriate
TArraysGenerator descendant (see ArraysGenerator unit and ArraysGenerator function). The
renderer can use such TGeometryArrays instance to easily render the shape with OpenGL.

TGeometryArrays stores the information about vertex positions, normal vectors, optional
colors, texture coordinates (for all texture units), GLSL attributes and more. This information
is split into two arrays:

1. one array keeps interleaved vertex positions and normals. We call it the coordinate array.

2. one array keeps interleaved other optional vertex data, like colors, texture coordinates,
GLSL attributes etc. We call it the attribute array.

Both arrays are interleaved, allowing for fast rendering.

Separating the information into two arrays is good for dynamic shapes. When the shape
coordinate changes, we have to change vertex positions and normal vectors, but the other
attributes stay the same. Thanks to the fact that we have separate coordinate and attribute
arrays, we can update only one of them when needed. Currently, we even have two separate
VBO for coordinate and attribute arrays.

Together, the coordinate and attribute arrays describe the complete per-vertex information.
TGeometryArrays.Count is the number of vertexes. TGeometryArrays.AttributeSize is the
size (in bytes) of one vertex in attribute arrays, and a similar TGeometryArrays.Coordinate-
Size is the size of one vertex in coordinate array. Currently, coordinate arrays always stores
vertex positions and normals, so CoordinateSize is actually a constant (6 * size of a sin-
gle-precision float).

There is a a third, optional, array stored inside TGeometryArrays: the indexes array.

• When Indexes exist, then you can render shape using glDrawElements. Each index (item
on Indexes array) is an integer between 0 and TGeometryArrays.Count - 1). Indexes.Count
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vertexes will be drawn. A single vertex (in coordinate / attribute arrays) may be accessed
many times, by using the same index many times in the Indexes array.

• When Indexes do not exist, you can render using glDrawArrays. In this case, exactly TGe-
ometryArrays.Count vertexes will be drawn.

Rendering with indexes is nice, as we conserve memory, and allow OpenGL to cache and
reuse transformation and lighting calculation results for repeated indexes. Unfortunately, it's
often not possible. Consider e.g. a cube with per-face normal vectors. Although you have
only 8 different vertex positions, each vertex is present on 3 faces, and on each face must be
rendered with different normal. This means that you have to pass to OpenGL 8 * 3 vertexes
(or, equivalent, 6 * 4 = 6 faces * 4 vertexes). There's no point using indexes, and OpenGL
couldn't reuse lighting calculation results anyway.

Our generator always tries to create indexes, if possible. Run view3dscene with --debug-log,
load your scene, and look for the lines Renderer: Shape XXX is rendered with
indexes: FALSE/TRUE in the log. This will show you how well it works for your shapes.

6.2.1. Rendering using geometry arrays and VBO
For each shape that needs to be rendered, our renderer wants to generate a corresponding
TGeometryArray. If an array is not created yet, a temporary generator (TArraysGenerator
instance) is created, that in turn creates TGeometryArray instance corresponding to given
VRML/X3D geometry.

Then the geometry array data is loaded into OpenGL vertex buffer objects. We use separate
vertex buffer objects for coordinate array, attribute array and indexes array.

After loading the data to VBO (which means that the data is hopefully copied into fast
GPU memory), we release the allocated memory inside TGeometryArray instance. Since that
point, the data is only inside VBO, and TGeometryArray.DataFreed is true. This is a very
nice memory conservation technique, the data is freed immediately after loading it to GPU.
We have to keep the TGeometryArray instance (but with underlying array memory freed), as
TGeometryArray knows the offsets of various attributes (colors, texture coords etc.) in the
data. Effectively, TGeometryArray describes the layout of memory that is loaded into VBO.

When we detect a change to VRML/X3D model, we only regenerate and reload to VBO
needed information. For example, if you animate a shape coordinate, we only need to reload
VBO containing the coordinate array (vertex positions and normal vectors). You can see this
optimization if you run view3dscene with --debug-log and load a model where shape coor-
dinates change (for example, try demo_models/x3d/worm_crawl.x3dv). Log lines
like Renderer: Loading data to existing VBOs (1,2,3), reloading
[Coordinate] indicate that only coordinates needed to be reloaded.

6.2.2. Caching of shapes arrays and VBOs
To conserve memory usage, in case you use the same geometry many times, the process is
actually a little more complicated than described in the previous section. We have a cache,
that stores TGeometryArrays instance and three VBO identifiers, in a TShapeCache class.
Many shapes can use the same TShapeCache instance (and thus share the same TGeometr-
yArrays and VBO), for example when you reUSE VRML/X3D geometry, or when you have
precalculated animation with the same geometry static for a number of frames. This cache
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allows to conserve memory and speedup rendering and loading time, in some cases making
a large improvement.

1. If you use precalculated animation (through the TCastlePrecalculatedAnima-
tion, for details see later Chapter 7, Animation) then this allows to conserve memory.
The shapes that are still (or change only stuff outside of arrays/VBOs, for example only
change transformation) will share the same arrays/VBO. This can be a huge memory sav-
ing, as only a single array/VBO triple may be needed for many animation frames. Very
important since generating many arrays/VBOs for TCastlePrecalculatedAnima-
tion is generally very memory-hungry operation.

For example, a robot moves by bending it's legs at the knees. But the thighs and the calves'
shapes remain the same, only the transformations of the calves change.

2. When you have a scene that uses the same shape many times but with a different trans-
formation. For example a forest using the same tree models scattered around. In this case
all the trees can share resources, this can be a huge memory saving if we have many trees
in our forest.

Figure 6.1. All the trees visible on this screenshot are actually the same
tree model, only moved and rotated differently.

Note that for some features, the caching cannot be as efficient. This includes things like
Attributes.OnBeforeVertex and the volumetric fog. In these cases, two shapes must
have equal transformation to look exactly the same. So in these cases (this is automatically
detected by the engine) we have a little less sharing, and use more memory.

For example, look at these two trees on a scene that uses the blue volumetric fog.
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Figure 6.2. The correct rendering of the trees with volumetric fog

Figure 6.3. The wrong rendering of the trees with volumetric fog, if
we would use the same arrays/VBO (containing fog coordinate for each
vertex) for both trees.

6.3. Basic OpenGL rendering
TGLRenderer class does the basic OpenGL rendering of VRML nodes.

“Basic” rendering means that this class is not supposed to choose the order of rendering of
VRML nodes. This implicates that TGLRenderer is not responsible for doing optimiza-
tions that pick only some subset of VRML nodes for rendering (for example, only the nodes
visible within the camera frustum). This also implicates that it's not responsible for arranging
the rendering order for OpenGL blending, see Section 6.4.1, “Material transparency using
OpenGL alpha blending”. In fact, it doesn't set any OpenGL blending parameters (aside from
setting colors alpha values as appropriate).

This limitation is done by design. A higher-level routines will internally use an instance of
this class to perform rendering. These higher-level routines should choose in what shapes to
render, and in which order. In the next Section 6.4, “VRML scene class for OpenGL” we
will get familiar with such higher-level class.

The way to use TGLRenderer looks like this:

1. First you must call Prepare method for all the State instances that you want to later
use for rendering. You can obtain such State instances for example by a traverse call-
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back discussed earlier in Section 3.6, “Traversing VRML graph”. The order of calling
Prepare methods doesn't matter — it's only important for you to prepare all states be-
fore you will render them.

For example Prepare calls may load textures into OpenGL, and triangulate outline fonts
(used by VRML Text and AsciiText nodes).

You are free to mix Prepare calls with any other rendering calls to OpenGL. This doesn't
matter, as Prepare only prepares some resources, without changing OpenGL state. You
cannot delete yourself any resources (texture names, display lists, buffer objects etc.) re-
served inside Prepare calls. A properly written OpenGL program should always allo-
cate free resource names using calls like glGenTextures anyway.

2. Call RenderBegin to start actual rendering. This will set up some OpenGL state that
will be assumed by further rendering calls.

If Attributes.PreserveOpenGLState, this also does a push of OpenGL at-
tributes stack, so that everything can be restored later by RenderEnd. Unfortunately,
this is quite costly operation, and it's often not needed (when you don't do any custom
OpenGL rendering), so Attributes.PreserveOpenGLState is false by default.

3. Then you should call RenderShape for each VRML/X3D shape that you want to render.
As mentioned earlier, all the shapes have to be previously prepared by a Prepare call.

4. Finally after you rendered all your shapes, you should call RenderEnd.

Between RenderBegin and RenderEnd you are not allowed to change OpenGL state
in any way except for calling other TGLRenderer methods. Well, actually there are
some exceptions, things that you can legitimately do — these include e.g. setting en-
abled state of OpenGL blending. But generally you should limit yourself to calling other
TGLRenderer methods between RenderBegin and RenderEnd.

Of course the scenario above may be repeated as many times as you want. The key is that you
will not have to repeat Prepare calls each time — once a state is prepared, you can use it
in RenderShape calls as many times as you want. If you will not need some state anymore
then you can release some resources allocated by it's Prepare call by using UnPrepare
or UnPrepareAll methods.

Note that TGLRenderer doesn't try to control whole OpenGL state. It controls only the
state that it needs to, to accurately render VRML nodes. Some OpenGL settings that are not
controlled include:

• global ambient light value (glLightModel with GL_LIGHT_MODEL_AMBIENT pa-
rameter),

• polygon mode (filled or wireframe?),
• blending settings.

So you can adjust some rendering properties simply by using normal OpenGL commands.
Also you can transform rendered VRML models simply by setting appropriate modelview
matrix before calling RenderBegin. So rendering done by TGLRenderer tries to coop-
erate with OpenGL nicely, acting just like a “complex OpenGL operation”, that plays nicely
when mixed with other OpenGL operations.

However, for various implementation reasons, many other VRML rendering properties can-
not be controlled by just setting OpenGL state before using RenderBegin. Instead you can
adjust them by setting Attributes property of TGLRenderer.
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6.3.1. OpenGL resource cache
Often when you render various VRML models, you will use various TGLRenderer in-
stances. But still you want those TGLRenderer instances to share some common resources.
For example, each texture has to be loaded into OpenGL context only once. It would be
ridiculous to load the same texture as many times as there are VRML models using it. That's
why we have TGLRendererContextCache. It can be used by various renderers to store
common resources, like an OpenGL texture name associated with given texture filename.

Things that are cached include:

• Fonts display lists.

• Texture names. This way you can make your whole OpenGL context to share com-
mon “texture pool” — and all you have to do is to pass the same TGLRendererCon-
textCache instance around.

• Shape information: arrays and VBOs mentioned in previous chapter.

By default, each TGLRenderer creates and uses his own cache, but you can create
TGLRendererContextCache instance explicitly and just pass it down to every OpenGL
renderer that you will create. All higher-level objects that use TGLRenderer renderer allow
you to pass your desired TGLRendererContextCache. And you should use it, if you
want to seriously conserve memory usage of your program.

Also note that when animating, all animation frames of given animation object (TCastleP-
recalculatedAnimation instance, that will be described in details in Chapter 7, An-
imation) always use the same renderer. So they also always use the same cache instance,
which already gives you some memory savings thanks to cache automatically.

6.3.2. Specialized OpenGL rendering routines vs
Triangulate approach

Historically, we used to have many rendering routines for various nodes. This turned out to
be extremely cumbersome to maintain. The new "geometry arrays" approach unifies this,
translating every shape to only a couple of primitives that map nicely to OpenGL (triangles,
quads, quad strips etc.). The "geometry arrays" are also be used to implement TShape.Lo-
calTriangulate and TShape.Triangulate. Thus, rendering and triangulating is
nicely unified.

We also have an alternative, debugging renderer that will be used if you define USE_VRM-
L_TRIANGULATION symbol for compilation of GLRenderer unit. Each node will be
triangulated using TShape.LocalTriangulate method (mentioned earlier in Sec-
tion 3.7.2, “Triangulating”) and each triangle will be passed to OpenGL. This is a very lim-
ited rendering method, only to show that TShape.LocalTriangulate works correctly:

1. It's slower than normal rendering through arrays and VBOs.

2. Things that are not expressed as triangles (IndexedLineSet, PointSet) will not be
rendered at all.

3. It lacks some features, because the triangulating routines do not return enough informa-
tion. For example, only the first texture unit gets correct texture coordinates, so multi-tex-
turing doesn't work (correctly).
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6.4. VRML scene class for OpenGL
TCastleScene is a descendant of TCastleSceneCore (which was introduced earlier
in Section 3.10, “VRML scene”). Internally it uses TGLRenderer (introduced in last sec-
tion, Section 6.3, “Basic OpenGL rendering”) to render scene to OpenGL. It also provides
higher-level optimizations and features for OpenGL rendering. In short, this is the most com-
fortable and complete class that you should use to load and render static VRML models. In
addition to TCastleSceneCore features, it allows you to:

• Render all shapes (i.e. whole VRML scene). Use Render method with nil as Test-
ShapeVisibility parameter for the simplest rendering method.

• You can render only the shapes that are within current camera frustum by RenderFrus-
tum. This works by checking each shape for collision with frustum before rendering. Gen-
erally, it makes a great rendering optimization if user doesn't usually see the whole scene
at once.

• When you initialize shape octree for rendering, by adding ssRendering to
TCastleScene.Spatial, then RenderFrustum will work even better. The shapes
within the frustum will be determined by traversing the shape octree. If your scene has
many shapes then this will be faster than without octree.

• In special cases you may be able to create a specialized test whether given shape is visi-
ble. You can call Render method passing as a parameter pointer to your specialized test
routine. This way you may be able to add some special optimizations in particular cases.

For example if you know that the scene uses a dense fog and it has a matching background
color (for example by Background VRML node) then it's sensible to ignore shapes that
are further then fog's visibility range. In other words, you only draw shapes within a sphere
around the player position.

A working example program that uses exactly this approach is available in our engine
sources in the file castle_game_engine/examples/vrml/fog_culling.l-
pr.

On the screenshot below the fog is turned off. Camera frustum culling is used to optimize
rendering, and so only 297 spheres out of all 866 spheres on the scene need to be rendered.

Figure 6.4. Rendering without the fog (camera frustum culling is used)
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On the next screenshot the fog is turned on. The same view is rendered. We render only
the objects within fog visibility range, and easily achieve a drastic improvement: only 65
spheres are passed to OpenGL now. Actually we could improve this result even more: in
this case, both camera frustum culling and culling to the fog range could be used. Screen-
shot suggests that only 9 spheres would be rendered then.

Figure 6.5. Rendering with the fog (only objects within the fog visibility
range need to be rendered)

• TCastleScene implements material transparency by OpenGL alpha blending. This re-
quires rearranging the order in which shapes are rendered, that's why it must be done in
this class (instead of being done inside TGLRenderer).

Details about this will be revealed soon in Section 6.4.1, “Material transparency using
OpenGL alpha blending”.

• TCastleScene has also comfortable methods to handle and render VRML Back-
ground node of your scene.

6.4.1. Material transparency using OpenGL alpha
blending

To understand the issue you have to understand how OpenGL works. OpenGL doesn't “re-
member” all the triangles sent to it. As soon as you finish passing a triangle to OpenGL (which
means making glVertex call that completes the triangle) OpenGL implementation is free
to immediately render it. This means mapping the given triangle to 2D window and updating
data in various buffers — most notably the color buffer, but also the depth buffer, the stencil
buffer and possibly others. Right after triangle is rendered this way, OpenGL implementation
can completely “forget” about the fact that it just rendered the triangle. All triangle geometry,
materials etc. information doesn't have to be kept anywhere. The only trace after rendering
the triangle is left in the buffers (but these are large 2D arrays of data, and only the human
eye can reconstruct the geometry of the triangle by looking at the color buffer contents).

In summary, this means that the order in which you pass the triangles to OpenGL is signifi-
cant. Rendering opaque objects with the help of depth buffer is the particular and simple case
when this order doesn't matter (aside for issues related to depth buffer inaccuracy or over-
lapping geometry). But generally the order matters. Using alpha blending is one such case.
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To implement VRML material transparency we use materials with alpha (4th color compo-
nent) set to value lower than 1.0. When the triangle is specified, OpenGL renders it. A special
operation mode is done for updating color buffer: instead of overriding old color values, the
new and old colors are mixed, taking into account alpha (which acts as opacity factor here)
value. Of course when rendering transparent triangles they still must be tested versus depth
buffer, that contains at this point information about all the triangles rendered so far within
this frame.

Now observe that depth buffer should not be updated as a result of rendering partially trans-
parent triangle. Reason: partially transparent triangle doesn't hide the geometry behind it. If
we will happen to render later other triangle (partially transparent or opaque) behind current
partially transparent triangle, then the future triangle should not be eliminated by the current
triangle. So only rendering opaque objects can change depth buffer data, and thus opaque
objects hide all (partially transparent or opaque) objects behind them.

But what will happen now if you render opaque triangle that is behind already rendered
partially transparent triangle? The opaque triangle will cover the partially transparent one,
because the information about partially transparent triangle was not recorded in depth buffer.
For example you will get this incorrect result:

Figure 6.6. The ghost creature on this screenshot is actually very close to
the player. But it's transparent and is rendered incorrectly: gets covered
by the ground and trees.

The solution is to avoid this situation and render all partially transparent objects after all
opaque objects. This will give correct result, like this:

80



OpenGL rendering

Figure 6.7. The transparent ghost rendered correctly: you can see that
it's floating right before the player.

Actually, in a general situation, rendering all partially transparent objects after opaque objects
is not enough. That's because if more than one transparent object is visible on the same screen
pixel, then the order in which they are rendered matters — because they are blended with
color buffer in the same order as they are passed to OpenGL. For example if you set your
blending functions to standard (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) then

each time you render a triangle with color (Red, Green, Blue) and opacity α, the current
screen pixel color (ScreenRed, ScreenGreen, ScreenBlue) changes to

(ScreenRed, ScreenGreen, ScreenBlue) * (1 - α) + (Red, Green, Blue) * α

Consider for example two partially transparent triangles, one of them red and the second one

green, both with α set to 0.9. Suppose that they are both visible on the same pixel. If you
render the red triangle first, then the pixel color will be

ScreenColor * (1 - α) * (1 - α) + RedColor * α * (1 - α) + GreenColor * α =
ScreenColor * 0.01 + RedColor * 0.09 + GreenColor * 0.9 =
visible as GreenColor in practice

If you render green triangle first then the analogous calculations will get you pixel color close
to the red.

So the more correct solution to this problem is to sort your transparent triangles with re-
spect to their distance from the viewer. You should render first the objects that are more
distant. Since April 2009 you can activate sorting shapes of transparent objects by setting
Attributes.BlendingSort := true.

However, this solution isn't really perfect. Sorting shapes is only an approximation, in more
general case you should sort single triangles. Sorting all triangles at each frame (or after each
camera move) doesn't seem like a good idea for a 3D simulation that must be done in real-time
as fast as possible. Moreover, there are pathological cases when even sorting triangles is not
enough and you will have to split triangles to get things 100% right. So it's just not possible
to overcome the problem without effectively sorting at each screen pixel separately, which
is not doable without hardware help.

That's why our engine by default just ignores the order problem (Attributes.Blend-
ingSort is false by default). We do not pay any attention to the order of rendering of
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transparent objects — as long as they are rendered after all opaque objects. In practice, ren-
dering artifacts will occur only in some complex combinations of transparent objects. If you
seldom use a transparent object, then you have small chance of ever hitting the situation that
actually requires you to sort the triangles. Moreover, even in these situations, the rendering
artifacts are usually not noticeable to casual user. Fast real-time rendering is far more impor-
tant that 100% accuracy here.

Moreover, our engine right now by default uses (GL_SRC_ALPHA, GL_ONE) blending func-
tions, which means that the resulting pixel color is calculated as

(ScreenRed, ScreenGreen, ScreenBlue) + (Red, Green, Blue) * α

That is, the current screen color is not scaled by (1 - α). We only add new color, scaled by it's
alpha. This way rendering order of the transparent triangles doesn't matter — any order will
produce the same results. For some uses (GL_SRC_ALPHA, GL_ONE) functions look better
than (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA), for some uses they are worse.
(GL_SRC_ALPHA, GL_ONE) tend to make image too bright (since transparent objects only
increase the color values), that's actually good as long as your transparent objects represent
some bright-colored and dense objects (a thick plastic glass, for example). (GL_SRC_AL-
PHA, GL_ONE_MINUS_SRC_ALPHA) on the other hand can sometimes unnaturally darken
the opaque objects behind (since that's what these functions will do for a dark transparent
object with large alpha).

6.4.2. Material transparency using polygon stipple
Other method of rendering material transparency deserves a quick note here. It's done by
polygon stipple, which means that transparent triangles are rendered using special bit mask.
This way part of their pixels are rendered as opaque, and part of them are not rendered at all.
This creates a transparent look on sufficiently large resolution. Order of rendering transparent
objects doesn't matter in this case.

However, the practical disadvantages of this method is that it looks quite, well, ugly. When
we use random stipples (to precisely show different transparency of different objects) then
the random stipples look very ugly:

Figure 6.8. Material transparency with random stipples
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Instead of using random stipples, we can use a couple of special good-looking prepared regu-
lar stipples. But then we don't have much ability to accurately represent various transparency
values (especially for very transparent objects). And still the results look quite bad:

Figure 6.9. Material transparency with regular stipples

6.4.3. Shape granularity
Optimizations done by TCastleScene (in particular, frustum culling) work best when the
scene is sensibly divided into a number of small shapes. This means that “internal” design
of VRML model (how it's divided into shapes) matters a lot. Here are some guidelines for
VRML authors:

• Don't define your entire world model as one IndexedFaceSet node, as this makes
frustum culling compare frustum only with bounding box of the whole scene. Unless your
scene is usually visible completely / not visible at all on the screen, in which case this is
actually a good idea.

• Avoid IndexedFaceSet nodes with triangles that are scattered all around the whole
scene. Such nodes will have very large bounding box and will be judged as visible from
almost every camera position in the scene, thus making optimizations like frustum culling
less efficient.

• An ideal VRML model is split into many shapes that have small bounding boxes. It's hard
to specify a precise “optimal” number of shapes, so you should just test your VRML model
as much as you can. Generally, RenderFrustum with ssRendering octree should
be able to handle efficiently even models with a lot of shapes.

6.4.3.1. Triangle granularity?

Then comes an idea to use scene division into triangles instead of shapes. This would mean
that our optimization doesn't depend on shape division so much. Large shapes would no
longer be a problematic case.

To make this work we would have to traverse triangle octree to decide which triangles are
in the visibility frustum. Doing this without the octree, i.e. testing each triangle against the
frustum, would be pointless, since this is what OpenGL already does by itself.
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Such traversing of the octree would have to be the first pass, used only to mark visible tri-
angles. In the second pass we would take each shape and render marked triangles from it.
The reason for this two-pass approach is that otherwise (if we would try to render triangles
immediately when traversing the octree) we would produce too much overhead for OpenGL.
Overhead would come from changing material/texture/etc. properties very often, since we
would probably find triangles from various nodes (with various properties) very close in
some octree leafs.

But this approach creates problems:

• The rendering routines would have to be written much more intelligently to avoid render-
ing unmarked triangles. This is not as easy as it seems as it collides with some smart tricks
to improve vertex sharing, like using OpenGL primitives (GL_QUAD_STRIP etc.).

• We would be unable to put large parts of rendering pipeline into OpenGL arrays. Con-
structing separate VBO for each triangle has little sense.

That's why this approach is not implemented.
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Chapter 7. Animation
There are two approaches to playing a 3D animation in our engine. They both use
TCastleScene for playback, start the animation by calling TCastleScene.PlayAn-
imation or setting TCastleScene.AutoAnimation.

7.1. Interactive (glTF, X3D, VRML,
Spine...)

This approach means that you load one model file, and the TCastleScene (actual-
ly, ancestor TCastleSceneCore) will make the events work, sending/receiving events
through routes, activating sensors, running scripts etc. Among many things, this means
that world time will be passed to TimeSensor nodes, allowing you to animate by in-
terpolator nodes. You can also pass user input to TCastleSceneCore methods like
TCastleSceneCore.KeyDown, and then the user will be able to fully interact with the
VRML scene.

This is what should be used for presenting interactive X3D / VRML world to the user, as
envisioned by X3D / VRML specifications.

7.1.1. 3D formats support
This plays animations from:

• glTF,

• X3D,

• VRML,

• Spine JSON,

• sprite sheets (from .castle-sprite-sheet, Starling, Cocos2d formats)

7.2. Non-interactive precalculated anima-
tion

This approach means that at loading time we "fix" the whole the animation. Animation be-
comes something like a 3D movie.

A downside is that loading time (and other resources usage, like memory) is larger, especially
for longer animations. That's because we store the whole animation in memory.

Huge advantage of this method: once loaded, animation can be played ultra-fast. Actually,
it's as fast a displaying a still model (currently, this is exactly what is done under the hood: at
each time, we simply display one chosen frame of animation; in the future this may change,
but still will be lighting fast). That's the reward for long loading time and "fixing" the ani-
mation.

We generally do not recommend this method anymore.
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7.2.1. 3D formats support
• castle-anim-frames (Castle Game Engine animations) [https://castle-engine.io/castle_an-

imation_frames.php] format was specifically created to describe precalculated animations.

• We also load MD3 (Quake3 engine) animations to this form, as they are especially suitable
for it.

7.2.2. Structural equality
TNodeInterpolator class is used to build and render precalculated animations. For each
provided frame we have an associated time. The resulting animation will change the first
model to the last one, such that at any time point we will either use one of the predefined
models (if point in time is close to the model's associated time) or a new model created by
interpolating between two successive models in time.

Under the hood, we have quite intelligent algorithm that checks each pair of two successive
models for structural equality. “Structural equality” simply means that the two models are
equal, with the exception of various floating-point fields, on which they may differ. The idea
is that we can define linear interpolation between two models that are structurally equal. So
when you specify two structurally equal models for an animation, we can generate many in-
termediate scenes (this is the ScenesPerTime parameter to loading method) that smoothly
show one model changing into the other. This can interpolate any floating-point field value,
like SFColor, SFFloat, SFMatrix, SFRotation, SFVec2f and SFVec3f an all
equivalent multi-valued fields (they can differ in values, but still must have the same number
of items).

For example, the first model may be a small sphere with blue color, and the second model
may be a larger sphere with white color. The resulting animation depicts a growing sphere
with color fading from blue to white. More examples:

• Moving, rotating, scaling objects may be expressed by changing transformation values.

• Any kind of morphing (mesh deformation) may be expressed by changing values of In-
dexedFaceSet coordinates.

• Materials, colors, lights may change. Even such properties like a material transparency,
or a light position or direction.

• Texture coordinates may change to achieve effects like a moving water surface.

Another advantage of structural equality is that we will perform aggressive merging of two
structurally equal models. This means that when two nodes are detected to be exactly equal,
one of them will be removed (and pointers rearranged to both point to the same node in
memory). If the nodes are not exactly equal, we still check their children and possibly merge
them. This is a huge saving in terms of memory, as practically all the non-animated parts
of the model will only be kept once in memory. It's implemented quite intelligently, so it's
actually a relatively fast process done during the model loading.

All the models of the animation do not actually have to be structurally equal. You can even
change one model into something completely different. But in these cases we cannot generate
smooth transition from one model to the other, and the animation will just show a sudden
change into new version at it's time.
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If you're concerned that possibly some parts of your animation are not structurally equal,
you can always load them into view3dscene [https://castle-engine.io/view3dscene.php] run
with --debug-log command-line option. Then, at loading time, you will get messages
on console if two successive models were not detected as structurally equal (and so a sharp
change from one to the other will be shown in animation). The message will also describe
exactly where the difference is found.

7.2.3. Generating intermediate scenes

First of all, the scenes are not interpolated when rendering. Instead, at loading time, we cre-
ate a number of new interpolated models and save them (along with the models that were
specified explicitly). The parameter ScenesPerTime says with what granularity the inter-
mediate scenes are constructed for a time unit.

If you specify too large ScenesPerTime your animations will take a lot of time to prepare
and will require a lot of memory. On the other hand too small ScenesPerTime value will
result in an unpleasant jagged animation. Ideally, ScenesPerTime should be >= than the
number of frames you will render in your time unit, but this is usually way too large value.

Special value of 0 for ScenesPerTime means that you want only the explicitly passed
nodes in the scene, nothing more. No more intermediate scenes will ever be created. This
creates a trivial animation that suddenly jumps from one still model to the next at specified
times. It may be useful if you already have generated a lot of models, densely distributed
over time, and you don't need TNodeInterpolator to insert any more scenes. Structural
equality (or it's lack) doesn't change the look of such animation, as no additional interpolation
is done when loading, but still structurally equal models may be merged to conserve memory
use.

Internally, the TNodeInterpolator wraps each model (that was specified explicitly or
created by interpolation) in a new node. This means that we have all the features of our static
OpenGL rendering available when doing animations too.

7.2.4. Storing precalculated animations in cas-
tle-anim-frames files

We have a special file format to express precalculated animations: castle-anim-frames, Cas-
tle Game Engine animations [https://castle-engine.io/castle_animation_frames.php]. It ref-
erences a number of static 3D model files and their corresponding times, describing the an-
imation.

If you want to experiment with castle-anim-frames format, view3dscene [https://cas-
tle-engine.io/view3dscene.php] can load and play animations in castle-anim-frames for-
mat. You can find example castle-anim-frames animations in VRML/X3D demo models
[https://castle-engine.io/demo_models.php] (see directory castle-anim-frames/), the
sources of our engine also contain simple examples in directory castle_game_en-
gine/examples/ (like resource_animations that plays animations specified in
resource.xml files for game creatures/items). Also “The Castle” [https://castle-engine.
io/castle.php] uses such animations for all creatures and weapons.

In general, using a single glTF, X3D, VRML, Spine file is a much better approach than
castle-anim-frames files.
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Also, castle-anim-frames files may waste a lot of disk space if your animation tries to change
two pieces of your model with drastically different speeds. Consider this:

1. It's OK to create an animation with a box that blinks (changes color) 100 times per time
unit. Just 2 model files are needed for this, with castle-anim-frames file specifying to loop
them over a short period of time.

2. It's also OK to create an animation with a sphere that blinks only once for a given time unit.

3. But if you want to create an animation that contains both the box (blinking 100 times/
time unit) and the sphere (blinking once for a time unit), you will have to prepare 100
still 3D files to express this!

VRML interpolators don't have this problem, since every interpolator has it's own set of keys.
So both can be placed within the same file, without the need to explicitly write 100 values
anywhere.

Despite this, there remains one practical advantage of using castle-anim-frames file format:
you can design your animations using any authoring software that can export static VRML
files. If your modeler can design animations, but doesn't save them to VRML interpolator
nodes, all you have to do is to export your models a couple of times from a couple of different
points in time.

In the old days, this allowed us to use Blender [http://www.blender3d.org/] do design anima-
tions and export them. Nowadays, we export from Blender to glTF using standard Blender
exporter, and there's no need for castle-anim-frames.
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Chapter 8. Shadow Volumes
You can easily render shadow volume for any TCastleScene by
TCastleScene.RenderShadowVolume method. Some features (see any article about
shadow volumes to know what they mean) :

• Silhouette edge detection is done, of course the model must be 2-manifold for this to work.

ManifoldEdges structure is prepared once during pre-processing step (by PrepareRen-
der call with prShadowVolume, or simply on first call to RenderShadowVolume).
This allows rendering shadow quads with silhouette detection in O(n+m) time, where n
is a number of edges and m is a number of triangles (these are roughly equal since on a
perfect 2-manifold 3 * m = 2 * n). Without calculated ManifoldEdges, this would have
to take square time, O(m2).

To account also models that are not completely 2-manifold, we have BorderEdges list with
edges that have only one neighbor triangle. Actually, it lists edges with any odd number
of neighbors (each neighbor pair makes one edge in ManifoldEdges, and then one left
neighbor makes one BorderEdges item). All BorderEdges are always considered part of
the silhouette. This is not a perfect solution, further in this chapter I present when this fails.
When it fails, there are two solutions:
1. fix the model to be 2-manifold.
2. or use the much slower algorithm version that doesn't do silhouette edge detection.

• Both Z-pass and Z-fail approaches are done. We automatically detect when Z-fail is need-
ed, and in 99% of the cases we can use faster Z-pass approach.

• Both positional and directional lights are supported.

• Using homogeneous coordinates tricks: we render shadow quads vertexes in real infinity,
and we can use perspective projection that has no far clipping plane.

• We do shadow volume culling for scenes (that is, we try to avoid rendering shadow quads
when it's obvious the scene shadow can't be visible within current camera frustum). Im-
plemented in TGLShadowVolumeRenderer.InitScene. It's not fully implement-
ed, we could take more conservative convex hull between light position and frustum. But
it seems that this wouldn't improve culling significantly, current approach gives us almost
as much as we can get from frustum culling.

More drastic improvements can only come from the use of portals.

8.1. Quick overview how to use shadow
volumes in our engine

Actually, our TCastleSceneManager does pretty much everything for you. Just set
ShadowVolumesPossible and ShadowVolumes to true. That's it — we will take
care to render with shadow volumes.

• You can change ShadowVolumes dynamically during the game (for example, if user
changes video preferences).
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• ShadowVolumesPossible should remain constant and reflect whether we have sten-
cil buffer available. Dynamically changing ShadowVolumesPossible is actually al-
lowed, but it may cause costly recalculation once the models are actually loaded. Also,
projection may need to be reapplied (only when ShadowVolumesPossible, we force
infinite far plane, which is needed for z-fail, when camera near plane is inside the shadow
volume).

You should also take care to initialize OpenGL context requiring stencil buffer (8-bit should
be enough for practical uses). This is something that has to be requested outside of scene
manager. The simplest way to do this is to use TCastleWindow.OpenOptional-
MultiSamplingAndStencil method instead of TCastleWindow.Open, see ex-
amples/vrml/simplest_vrml_browser_with_shadow_volumes.lpr.

To actually define what lights are used for shadow volumes, set shadowVolumes and
shadowVolumesMain to true on some VRML/X3D light node. See https://castle-engine.
io/x3d_extensions.php#section_ext_shadows for details. Alternatively, you can control the
main light source by overriding TCastleSceneManager.MainLightForShadows.

If you define your own T3D descendant, be sure to override T3D.RenderShadowVolume
method. See API reference for details now to handle it.

You can change ReceiveShadowVolumes and CastShadowVolumes properties of
every T3D descendant.

The whole approach is quite flexible and is used throughout my whole engine, and it will
use all implemented shadow volume optimizations under the hood. For example, see "The
Castle" game, where almost everything may have a shadow rendered by shadow volumes
— creatures, level scene, level objects. And everything goes through this same approach,
getting all optimizations.

8.2. Inspecting models manifold edges
You can see how silhouette edge detection goes, which edges from ManifoldEdges (2 neigh-
bors) are qualified as silhouette and which edges were detected as BorderEdges. This is avail-
able in view3dscene by View -> Fill mode -> Silhouette and Border Edges menu item.
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Figure 8.1. Fountain level, no shadows

Figure 8.2. Fountain level, shadows turned on

Now, turn edges on. Silhouette edges detected are drawn yellow (these depend on light po-
sition relative to the model). Blue edges are BorderEdges (these are independent from light
position, they are simply edges with only 1 neighbor triangle).
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Figure 8.3. Fountain level, edges marked

Figure 8.4. Fountain level, only edges

8.3. Ghost shadows
Well known, practically unavoidable problem with shadow volume algorithm are ghost shad-
ows. See example below:

92



Shadow Volumes

Figure 8.5. Ghost shadows

Room 1Totally unrelated room 2

Good shadowBad ghost shadow

This is practically unavoidable, since to fix this, you would have to cap shadow quads where
the room 1 ends. This is very computationally intensive task (for real-time graphics at least),
since you must calculate the common part of two 3D objects.

8.4. Problems with BorderEdges (models
not 2-manifold)

8.4.1. Lack of shadows (analogous to ghost shad-
ows)

Using BorderEdges idea, to force silhouette edge detection even with non-2-manifold mod-
els, can cause artifacts for similar reasons as "ghost shadows". But in this case, the effect
is that not enough of the area is covered by shadow (as opposed by normal ghost shadows
artifacts that cause too much area to be covered by shadow). This artifacts are similarly un-
avoidable, on the same reasoning.
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Figure 8.6. Lack of shadows, problem analogous to ghost shadows

Blue is proper shadow

Yellow areas should be in shadow too,
but they are not --- border edges cause effect
similar to ghost shadows, but here they prevent
shadows.

8.4.2. Not closed silhouettes due to BorderEdges

Yet another problem related to BorderEdges is the fact that silhouettes may be not closed
properly. Why? Because part of the silhouette goes on the border edges. To make silhouettes
closed, we would have to render shadow quads for some border edges twice (or not at all),
yet I'm not sure for now how can I do this easily.

Illustrated example why and when this problem occurs is below. Consider a cylinder capped
at the top and open at the bottom.
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Figure 8.7. A cylinder capped at the top, open at the bottom

Now assume a positional light above this cylinder. The light is above, but not precisely above
— that is, the light lights the top and some sides of the cylinder. Image below shows generated
shadows quads, silhouette (yellow) edges and border (blue) edges.

Figure 8.8. Cylinder open at the bottom with shadow quads

The last image shows the same thing as above, but the cylinder geometry is not rendered, to
make things clear. You should be able to see what's going wrong here: part of the blue (border)

95



Shadow Volumes

edges should be part of the silhouette too. The blue edges on the right side should either
produce two shadow quads, or none at all. Otherwise the shadow volume is not correctly
closed, and the shadows appear on completely wrong places of the screen.

Figure 8.9. Cylinder open at the bottom with shadow edges

Solution, as usual for BorderEdges problems, is to avoid them: make your models truly 2-
manifold, or use slower version of algorithm without silhouette edge detection.

8.4.3. Invalid capping for z-fail method

Another artifact is painfully visible when rendering such models using z-fail method (used
when camera is inside shadow volume). Z-fail requires that shadows volume is capped, i.e.
we have to render light cap (triangles facing light, on shadow caster position) and dark cap
(triangles facing light, extruded to infinity). But in case of non-2-manifold models, triangles
facing light may not cap the volume fully. In fact, for non-2-manifold models, it's possible
that no triangles will face the light — even when shadow volume exists !

Below we see screenshots of triangle.x3dv test (see engine demo models, shad-
ow_volumes dir). All screenshors were done with z-fail method forced. The shadow cast-
er in this case is a simple single triangle. It's not 2-manifold, it has 3 BorderEdges. The
first screenshot shows the correct result: triangle correctly shadows the environment. Second
screenshot shows the same scene with shadow volumes drawn, so that we can see what's
going on.
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Figure 8.10. Good shadow from a single triangle

Figure 8.11. Good shadow from a single triangle, with shadow volumes
drawn

Now, what happens if we simply rotate the triangle, so that the other side of it is visible?
The situation seems completely analogous, so we would expect to see the same effect... But
we don't.
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Figure 8.12. Bad shadow from a single triangle

We see that triangle is incorrectly in it's own shadow, and we see another strange shadow
of the triangle. What happened here? These are both the effects of lacking the caps for z-
fail method:

1. Lack of light cap means that triangle is considered in it's own shadow. In fact, anything
between the triangle and the camera (regardless of light position !) would be considered
in shadow, because the shadow cap is "open" there.

2. Lack of dark cap means that somewhere in infinity there's a place where one front facing
shadow quad is visible, but no back facing shadow quads. This means that value in stencil
buffer is -1, so it's not zero, so the pixels are considered in shadow.

Now, why both the caps are lacking? Because there are no triangles in the model that are
front-facing to the light. In this simple scene, there's only one triangle: when it's front-facing
to the light, we're lucky and things work fine, but when it's back-facing to the light, errors
occur.
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Chapter 9. Links

9.1. VRML / X3D specifications
• VRML 1.0 specification  [http://www.web3d.org/x3d/specifications/vrml/VRML1.0/in-

dex.html]
• VRML 2.0 (also called VRML 97) specifications  [http://www.web3d.org/x3d/specifica-

tions/vrml/]
• The Annotated VRML 97 Reference  [http://accad.osu.edu/~pgerstma/class/vnv/re-

sources/info/AnnotatedVrmlRef/Book.html]
• X3D specifications  [http://www.web3d.org/x3d/specifications/]

9.2. Author's resources
Our VRML / X3D engine homepage [https://castle-engine.io/], including:

• Engine documentation [https://castle-engine.io/engine_doc.php] — the document that
you're reading right now

• view3dscene [https://castle-engine.io/view3dscene.php] — VRML (1.0, 2.0), X3D brows-
er, and a viewer for other 3D formats (3DS, OBJ, Collada, MD3, others)

• rayhunter [https://castle-engine.io/rayhunter.php] — command-line ray-tracer, and it's
gallery [https://castle-engine.io/raytr_gallery.php]

• overview and sources of my engine [https://castle-engine.io/engine.php] and their  refer-
ence [https://castle-engine.io/reference.php]

• VRML / X3D implementation status [https://castle-engine.io/x3d_implementation_status.
php]

• VRML / X3D test suite [https://castle-engine.io/demo_models.php]

• Specification of my extensions to VRML / X3D [https://castle-engine.io/x3d_extensions.
php]

See also author's private homepage [http://michalis.ii.uni.wroc.pl/~michalis/].
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Version of this document
This documentation started it's life as my master's thesis, under the title VRML processing and
rendering engine, and under the supervision of dr Andrzej Łukaszewski. It was submitted
and passed in September 2006 by the Institute of Computer Science at University of
Wrocław in Poland. If you're curious, you can find this old version at http://www.ii.uni.wroc.pl/~anl/
MGR/.

Our engine evolved quite a lot since that time, and so this documentation was heavily updated and
extended since then.
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