Castle Game Engine internals

(Outdated) Overview of the Cas-
tle Game Engine and VRML 1.0

Michalis Kamburelis

Castle Game Engine internals: (Outdated) Overview of the Castle

Game Engine and VRML 1.0

Michalis Kamburelis
Copyright © 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2022 Michalis Kamburelis

Y ou can redistribute and/or modify this document under the terms of the GNU General Public License [http://www.gnu.org/licenses/gpl.html]
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Table of Contents

GOBIS .ottt e b — e e b e e e e nnbr e e e e naeee s vii
1. OVEIVIEW OFf VRML oeiiiiiiiiii ettt e e enne e e 1
O T = = T 0 o) = PR 1
L2, FHEIAS .t 3
121 FIEld tYPES coeeeeie e 3
1.2.2. Placing fields within NOdesc.cccceeeeiiiiiiiiiie e, 5
123 EXAMPIES .ottt 5

1.3, Children NOGESo.evveie it 7
1.3.1. Group NOde EXAMPIESuvveiieeiee et 7
1.3.2. The Transform NOOEc.uevveiiiiiiee e 10
1.3.3. Other grouping NOUEScccuvvirieiiee e e e 12

1.4. DEF / USE MECNANISIM ...coiiiiiiiieiiiiiee ettt 13
14.1. VRML file @8 agraphccceeeeiiiiiiiiiiecee et 17

15, VRML 1.0 S ..eeveiiiiiie ettt sttt e e 17
1.5.1. Why VRML 2.0 iS DELENeeveiiiiiiieiiiiiiee et 21

1.6. Other important VRML fEaIUrESccoiiiiiiiiiieiie e 23
1.6.1. 1NN NOUESovviieiiiiiie ettt 23
1.6.2. Texture transformMationooocueieeiiiieee i 24
R N F= Y/ o = o] o IS PRRRP 27
1.6.4. IndexedFaceSet fEAIUIEScccuiiiiieiiiiiie e 28
1.6.5. ProtOtYPES ..evviiiiiie ettt 30
1.6.6. X3D FEALUMESeeeiiiiiiiie ettt 30
1.6.7. EVENtS MECNANISIT ..ottt 32
G S Sw] (] o EETR 35
1.6.9. MOFE fAIUMESveeieeiiiiie ettt 36

2. SCENE IMANAGES ..eeviitiiei ettt ettt e e e e et e e e et e e e ab b n s e e e e e e e aebbannreaeas 37
2.1. Scene manager, and basic example of using our engineccccceeeeevcvvvneenen. 37
2.2. Manage your OWN SCENE MANBGEYuuiierierieerririnieeeeeteeersisinnseesseeersrnneeas 38
2.3. 2D CONLrolS MANAQETccuvvieieeeee e e e et e e e e e e e ee e e e e e e e e s s re e e e e e e e s e enneees 39
2.4, CUSIOM VIEBWPOITS ..treieiieeeeiiciiiiie e e e e s s ettt r e e e e e s s statrre e e e e e e s e sentbraaeeaaeeeaans 39
3. Reading, writing, processing VRML scene graphccccoeeevviiiiiiieenie e, 41
3.1. TVRMLNOGE ClaSS DaSICSvvviiiiiiiiiie i 41
3.2. The sum of VRML 1.0 @Nd 2.0 ...ccooiviiieiiiiiiee e 42
3.3. Reading VRML fIl€5 ..ccciiiiiiii i 44
3.4, Writing VRML Ill€S ..coviiiiiiie et 45
3.4.1. DEF / USE mechanism when WIitingccccieveee e iiiiiiiiieecee e 45
3.4.2. VRML graph preServingcc.vvveeeeeeeeiiccciiieeeee e ee e 46

3.5. Constructing and processing VRML graph by code.........cccooveeeeeeiiiiiinnnen. 47
3.6. Traversing VRML graph ..o 47
3.7. Geometry NOUES FEALUIEScccuiiieiiee et e 47
3.7.1. BOUNAING DOXESccoiiiiiiieiiee ettt e et e e 47

I A N g T g o 01 =g To [U RS 48

3.8. WWWBASEPath PrOPEITY ..oceeeeeeiieeiiiieee et e e 48
3.9. Defining your own VRML NOAESccuviiiiieiie et 49
3.10. VRML SCENE ..ottt ettt ettt ettt et e e et e et e e nnnee s 49
3.10.1. VRML SNEPE ...cvvieiiiiiiee ettt e e 50
3.10.2. Simpletree of ShaPEScccviiiieiie e 50
3103, EVENES ..ottt 51
3.10.4. Various comfortabl@ FOULINESeeeeiiiiieeiiiiiie e 51
G300 (0 ST o4 11 oo PSRRI 52

Castle Game Engine internals

3.10.6. Events and ChangedField notifiCationsSccceevvivieeiiiiieee i 52

4. OCIIEES ...ttt e e ettt e et e et e s na e r e e e e e e e e an 54
4.1. COllISION JEIECTIONoeeiiiiiieeiiiie et 54

4.2. HOW OCIIrEE WOTKSoeiiiiiiiiie ittt 55
4.2.1. Checking for collisions using the OCtreecccceeviiiveeniiiieee e, 57

4.2.2. CONSIIUCHING OCIIEEveieeeiiieee ettt 59

4.3. Octrees for dynamiC WOTTASeeeiiiiiiiie it 60
4.3.1. Transforming between world and local coordinates.............cccccvvveeennn. 61

4.3.2. The future — dynamic irregular OCtreesccocvevvivveeeiiiineeeiiieenen 62

4.4. SIMilar data SITUCLUIESevieiiiieie ettt 62

5. RaAY-LraCer FeNUENINGoeeiiiiiiieeiiiee ettt e e e s neee e e 64
5.1, USING OCIEE ...ttt a e e e e e 64

5.2. ClassiC determiniStiC ray-traCarcooveeeeeiieiee e 64

5.3, PaIN-TrACENeeiiiiiie e 65

5.4, RGBE TOMEL ...ttt 66

5.5. Generating light MaPScoooiiiiiieiiiii e 66

6. OPENGL FENAEITING ..eeeeiiiieieeeiiei ettt e s st e e e r e e s e e e e s abereeeaans 70
6.1. VRML [ightS renderingccoooveeieiiiiiieeeiiee e 70
6.1.1. Lighting MOGE!cocuviiiiiiiiiie et 70

6.1.2. ReNENiNgG lIGNES ...couveiieiiiie e 71

6.2, GEOMELIY GITAYS ...oieeeeeeeeeeeee e et e e e e e e s s e e e e e e e e s e e e e e e s e s snnrnreeeeeeens 72
6.2.1. Rendering using geometry arrays and VBOcccccoviiiiveiiiiiieeeenns 73

6.2.2. Caching of shapes arrays and VBOSccceveeiiiiiieiiiiieee e 73

6.3. BaSiC OPenGL FeNUENINGcceeeiirriieiiiiiieeeiiee e st e e e e e e e e 75
6.3.1. OpenGL reSoUrCe CACNEcoiuviieeiiiieee e 77

6.3.2. Specialized OpenGL rendering routines vs Triangulate approach 77

6.4. VRML scene class fOr OPENGLccuvvieiiiiiieeiiieee e 78
6.4.1. Material transparency using OpenGL aphablendingcccceeennee. 79

6.4.2. Material transparency using polygon Stipplecccvvveiiiieeeriiiieeenne 82

6.4.3. Shape granuUIaritycoocueeieiiiiiiee e 83

AN 111107 1o R PP UPPRPON 85
7.1. Interactive (QITF, X3D, VRML, SPINE...) .eoriiiiiiiiieiiiiiee e 85
7.1.1. 3D fOrMBELS SUPPOIT ...eeeeeeeiiiieee ettt e e et et e e e s e e 85

7.2. Non-interactive precalculated animationcooocveeeeiniiieeeniiieee e 85
7.2.1. 3D TOrMBELS SUPPOITeeeeeeiiiieee et et e e e e 86

7.2.2. SIrUCtUral €QUEITTY ...eeeieeeiieeeiiee e 86

7.2.3. Generating intermediale SCENESccoiivreieriiieeee e 87

7.2.4. Storing precalculated animations in castle-anim-framesfiles............... 87

8. ShalOW VOIUMES ...ttt e e 89
8.1. Quick overview how to use shadow VOlUmMES in our engingcccoccvveeeene 89

8.2. Inspecting models manifold €dgeSccuvvveiiiiiiie e 90

8.3, GNOSE SNAOOWS ..ottt 92

8.4. Problems with BorderEdges (models not 2-manifold)cccveeeiiiiiieennnne. 93
8.4.1. Lack of shadows (analogous to ghost Shadows)ceeevvveeeeeiiinnnee. 93

8.4.2. Not closed silhouettes due to BorderEdgesccvveeviiieeeiiiiieeenne 9

8.4.3. Invalid capping for z-fail method ..o 96

0. LINKS et ab e anes 99
9.1. VRML / X3D SPECITICALIONScceiiviieeiiiiiiee ettt 99

9.2, AULNOI'S FESOUITESceeiiiiiieeeiiitee e ettt e e et e e st e e et e e e st e e e e e e 99

List of Figures

1.1 VRML 1.0 SPhere @Xamplecccooiiiiiiiiiecee ettt a e 2
1.2. VRML 2.0 SPhere @Xamplecccooiiiiiiiiiieice ettt a e 2
1.3. Cylinder example, rendered in wireframe mode (because it's unlit, non-wireframe
rendering would 100K CONfUSING)cvviiiiiiieeiiiiiee e 6
1.4. VRML points example: yellow point at the bottom, blue point at thetop 7
15 A cubeand asphere iN VRML L0oooiiiiiiiiiiie e 7
1.6. An unlit box and asphere iN VRML 2.0ccvviiiiiiiiiiceee e 9
1.7. A box and atrandated SPNErEccoo i 11
1.8. A box, atrandated sphere, and atranslated and scaled sphere.cccovveeeeeenis 12
1.9. Two cones with different MaterialScoveeviiiieiiiiiiie e 13
1.10. A box and atranglated sphere using the sSame teXtureooecvvvveeeeeeeec e, 14
1.11. Three columns oOf three SPhEreSccvvveveiii i 15
1.12. Faces, lines and point sets rendered using the same Coor di nat e node............... 17
1.13. Spheres with various material in VRML 1.0 ... 19
1.14. An example how properties “leak out” from various grouping nodesin VRML

0 LSRRI 21
1.15. Our earlier example of reusing cone inlined a couple of times, each time with a

dlight trandation and rOtationcoocciiiieiiiee e e 24
1.16. Textured cube with various texture transformationscccccevviiveeeiiiiene e 25
1.17. Viewpoint defined for our previous example with multiplied cones...................... 28
1.18. Three towers with various cr easeAngl e Settingsccccvvevveeeieiiciieeeee e 30
2.1. Three 3D objects are rendered here: precalculated dinosaur animation, scripted

(could be interactive) fountain animation, and Static tOWE.ccccceeeeviviiiiiieeeeeee e, 37
2.2. Simple scene, viewed from various viewports simultaneously.c.ccccoeccvvvvnee.n. 40
2.3. Interactive scene, with shadows and mirors, viewed from various viewports. 40
4.1. A sample octree constructed for a scene with two boxes and a sphere 57
4.2. A nasty case when abox is considered to be colliding with a frustum, but in fact

it's outside Of the FIUSIUMooiiiiiiie s 58
5.1. lets take a walk SCENE, SIUE VIEWceveiiiiiiiiiiiiiec et 67
5.2. lets take a walk SCENE, tOP VIEWoouviiiiieiie ettt 67
5.3. Generated ground TEXTUMEeeeieeeiiiiiirieeeee e e e et e e e e e e s et e e e e e e e s s et aaeeeeeas 68
5.4. lets take a walk scene, with ground texture. Side Viewccccceveeeviiiiiiieeneeenn, 68
5.5. lets take a walk scene, with ground texture. TOP VIEW.c.cvveeeveeeeiiiiiiiiieeeeeeeens 69
6.1. All the trees visible on this screenshot are actually the same tree model, only

moved and rotated differently. ..o 74
6.2. The correct rendering of the trees with volumetric fog ..o, 75
6.3. The wrong rendering of the trees with volumetric fog, if we would use the same
arrays/VBO (containing fog coordinate for each vertex) for both trees.ccveee... 75
6.4. Rendering without the fog (camera frustum culling isused)cccccoeviiciiiienenenn. 78
6.5. Rendering with the fog (only abjects within the fog visibility range need to be

1= 10 L= 1= o) PR 79
6.6. The ghost creature on this screenshot is actually very close to the player. But it's
transparent and is rendered incorrectly: gets covered by the ground and trees. 80
6.7. The transparent ghost rendered correctly: you can see that it's floating right be-

fOrE the PIAYEN. ... 81
6.8. Materia transparency with random StippleSccccvviieiieeiii v 82
6.9. Materia transparency with regular Stipplesccccveeeveeeiiiicciee e, 83
8.1. Fountain [&VEl, NO SNAAOWScoovviiieeieti ettt ettt e et e e e et eeeeeetreeeeeraraeee 91
8.2. Fountain level, ShatdoWS tUIMNE ONuuieeeiiieeiie et e e e e e e e eee e e e eereeeeens 91
8.3. Fountain level, edges Markedc..eeeviiiiiiiiiiiiiie e 92

Castle Game Engine internals

8.4. Fountain level, Only E00ESvviiiiiiiie e 92
8.5. GRhOSt SNAHOWSeieiieee e e e e e e eas 93
8.6. Lack of shadows, problem analogous to ghost shadowscccceeviiiveeiiiiieeenne 9
8.7. A cylinder capped at the top, open at the bottomcccoeeeiiiiiiciiiii e 95
8.8. Cylinder open at the bottom with shadow qQUadSccccvviiiiieeei e 95
8.9. Cylinder open at the bottom with shadow edgesccccveeviiiciiiiieee e, 96
8.10. Good shadow from a SiNgle trianglec.uvveeiiiiiie e 97
8.11. Good shadow from a single triangle, with shadow volumesdrawn 97
8.12. Bad shadow from a single triangle ..o 98

Vi

Goals

This document describes the implementation of a 3D engine based on the VRML and X3D
languages.

The VRML language is used to define 3D worlds. X3D issimply VRML 3.0, a so supported
by our engine (since May 2008). Wewill have someintroductionto thelanguagein Chapter 1,
Overview of VRML. VRML has many advantages over other 3D languages:

The specification of the language is open.

The language is implementation-neutral, which means that it's not “tied” to any particular
rendering method or library. It's suitable for real-time rendering (e.g. using OpenGL or
DirectX), it's also suitable for various software methods like ray-tracing. This neutrality
includes the material and lighting model described in VRML 2.0 specification.

Inventor, an ancestor of the VRML, lacked such neutrality. Inventor was closely tied to
the OpenGL rendering methods, including the OpenGL lighting model.

The language is quite popular and many 3D authoring programs can import and export
models in this format. Some well-known open-source 3D modeling programs that can
export to VRML are Blender [http://www.blender3d.org/] and Art Of Illusion [http://
aoi.sourceforge.net/]. White Dune [http://wdune.ourproject.org/] is a modeller especially
oriented towards VRML.

Thelanguage can describe geometry of 3D objectswith all typical propertieslike materials,
textures and normal vectors. More advanced features like multi-texturing, environment
cube map texturing, shaders (in GLSL, NVidia Cg, HLSL) are also available in newest
version (X3D).

The language is not limited to 3D objects. Other important environment properties, like
lights, the sky, the fog, viewpoints, collision properties and many other can be expressed.
Events mechanism allows to describe animations and user interactions with the scene.

The language is easy to extend. Y ou can easily add your own nodes and fields (and | did,
see thelist of my VRML extensions [https://castle-engine.io/x3d_extensions.php]).

Implementation goals were to make an engine that

UsesVRML / X3D. Some other 3D fileformatsare also supported (like 3DS, MD3, Wave-
front OBJ and Collada) by silently converting them to VRML/X3D graph.

Allows to make a general-purpose VRML browser. See view3dscene [https://castle-en-
gine.io/view3dscene.php].

Allowsto make more specialized programs, that use the engine and VRML models as part

of their job. For example, a game can use VRML models for various parts of the world:

o Static environment parts (like the ground and the sky) can be stored and rendered as
one VRML model.

» Each creature, each item, each “ dynamic” object of theworld (door that can open, build-
ing that can explode etc.) can be stored and rendered as a separate VRML model.

When rendering, all these VRML objects can be rendered within the same frame, so that
user sees the complete world with all objects.

Vii

http://www.blender3d.org/
http://www.blender3d.org/
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://aoi.sourceforge.net/
http://wdune.ourproject.org/
http://wdune.ourproject.org/
https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php

Goals

Example game that uses my engine this way is “The Castle” [https://castle-engine.io/
castle.php].

Using the engine should be as easy as possible, but at the same time OpenGL rendering

must be asfast as possible. This means that a programmer gets some control over how the

enginewill optimize given VRML model (or part of it). Different world parts may require

entirely different optimization methods:

* static parts of the scene,

* parts of the scene that move (or rotate or scale etc.) only relatively to the static parts,

* partsof the scene that frequently changeinside (e.g. atexture changes or creature'sarm
rotates).

All details about optimization and animation methods will be given in later chapters (see
Chapter 6, OpenGL rendering and Chapter 7, Animation).

The primary focus of the enginewas always on 3D games, but, as described above, VRML
models can be used and combined in various ways. This makes the engine suitable for
various 3D simulation programs (oh, and various game types).

The engine is free open-source software (licensed on GNU General Public License).

Developed in object-oriented language. For me, the language of choice is ObjectPascal,
asimplemented in the Free Pascal compiler [http://www.freepascal.org].

viii

https://castle-engine.io/castle.php
https://castle-engine.io/castle.php
https://castle-engine.io/castle.php
http://www.freepascal.org
http://www.freepascal.org

Chapter 1. Overview of VRML

This chapter is an overview of VRML concepts. It describes the language from the point of
view of VRML author. It teaches how a simple VRML files look like and what are basic
building blocks of every VRML file. It's intended to be a simple tutorial into VRML, not a
complete documentation how to write VRML files. If you want to learn how to write non-
trivial VRML files you should consult VRML specifications.

This chapter also describes main differences between VRML 1.0, 2.0 (also known as VRML
97) and 3.0 (more widely known as X3D). Our engine currently handles all these VRML
versions. However, at the time of initial writing of this document, our engine supported only
VRML 1.0 and basic 2.0, so more advanced and interesting VRML 2.0 and X3D concepts
are only outlined at the end of this chapter — maybe this will be enhanced some day.

1.1. First example

VRML files are normal text files, so they can be viewed and edited in any text editor. Here's
avery simple VRML 1.0 file that defines a sphere:

#VRML V1.0 ascii
Sphere { }

Thefirst lineisaheader. It's purpose is to identify VRML version and encoding used. Over-
simplifying things alittle, every VRML 1.0 file will start with the exact same line: #VRVL
V1.0 ascii.

After the header comes the actual content. Like many programming languages, VRML lan-
guage is afree-form language, so the amount of whitespace in the file doesn't really matter.
In the example file above we see a declaration of a node called Spher e. “Nodes’ are the
building blocks of VRML: every VRML file specifies a directed graph of nodes. After spec-
ifying the node name (Spher e), we aways put an opening brace (character {), then we
put alist of fields and children nodes of our node, and we end the node by a closing brace
(character }). In our simple example above, the Spher e node has no fields specified and
no children nodes.

The geometry defined by this VRML file is a sphere centered at the origin of coordinate
system (i.e. point (0, 0, 0)) with aradius 1.0.

1. Why the sphereis centered at the origin?

Spheres produces by a Spher e node are always centered at the origin — that's defined
by VRML specifications. Don't worry, we can define spheres centered at any point, but to
do thiswe have to use other nodes that will move our Spher e node— more on thislater.

2. Why the sphereradiusis 1.0?

Thisis the default radius of spheres produced by Spher e node. We could change it by
using ther adi us field of aSpher e node — more on this later.

Sincethe material was not specified, the spherewill usethe default material properties. These
make a light gray diffuse color (expressed as (0.8, 0.8, 0.8) in RGB) and a dight ambient
color ((0.2, 0.2, 0.2) RGB).

Overview of VRML

Figure1l.1l. VRML 1.0 sphere example

Anequivalent VRML 2.0 filelooks like this:
#VRML V2.0 utf8

Shape {
geonetry Sphere { }
}

Asyou can see, the header line is now different. It indicates VRML version as 2.0 and en-
coding as utf8 *.

In VRML 2.0 we can't directly use a Spher e node. Instead, we have to define a Shape
node and set it'sgeomnet ry field to our desired Spher e node. More on fields and children
nodes later.

Actually, our VRML 2.0 example is not equivalent to VRML 1.0 version: in VRML 2.0
version sphere is unlit (it will be rendered using a single white color). It's an example of a
general decision in VRML 2.0 specification: the default behavior isthe onethat is easiest to
render. If wewant to makethe spherelit, we haveto add amaterial to it — more on thislater.

Figure1.2. VRML 2.0 sphere example

WRML 2.0filesare always encoded using plain text in utf8. There was aplan to design other encodings, but it was never realized
for VRML 2.0. VRML 2.0 files distributed on WWW are often compressed with gzip, we can say that it's a “ poor-man's binary
encoding”.

X3D (VRML 2.0 successor) filled the gap by specifying three encodings available: “classic VRML encoding” (thisis exactly
what VRML 2.0 uses), an XML encoding and a binary encoding. Our engine currently handles XML and classic X3D encoding.

Overview of VRML

1.2. Fields

Every VRML node has a set of fields. A field has a name, a type, and a default value. For
example, Spher e node has a field named r adi us, of type SFFI oat , that has a default
value of 1.0.

1.2.1. Field types

Therearemany field typesdefined by VRML specification. Each field type specifiesasyntax
for field values in VRML file, and sometimes it specifies some interpretation of the field
value. Examplefield types are:

SFF| oat , SFDoubl e, SFTi ne

A float value. Syntax isidentical to the syntax used in various programming languages,
for example 3. 1415926 or 12. 5e- 3.

X 3D added SFDoubl e type, which should be stored and processed with at least double
precision.

And there's the SFTi ne field type. It's syntax and internals are equivalent to SFDou-
bl e, but it hasan added semantic: it specifiesatime period or apoint intime. Inthelatter
case, thisisthe number of seconds passed since the Unix epoch (00:00:00 UTC on 1 Jan-
uary 1970). Although for single-player games, where time is not necessarily tied to the
real-world time, sometimes other interpretations are useful, see my “VRML / X3D time
origin considered uncomfortable” article [https://castle-engine.io/x3d_time_origin_con-
sidered_uncomfortable.php].

SFLong (in VRML 1.0), SFI nt 32 (in VRML 2.0)

A 32-bit integer value. As you can see, the name was changed in VRML 2.0 to indicate
clearly the range of allowed values.

SFBool

A boolean value. Syntax: one word, either FALSE or TRUE. Note that VRML is case-
sensitive. In VRML 1.0 you could a so write the number O (for FALSE) or 1 (for TRUE),
but this additional syntax was removed from VRML 2.0 (since it's quite pointless).

SFVec2f , SFVec 3f , SFVec4f

Vector of 2, 3 or 4 floating point values. Syntax is to write them as a sequence of SF-
FI oat vaues, separated by whitespace. The specification doesn't say how these vectors
areinterpreted: they can be positions, they can be directions etc. The interpretation must
be given for each case when some node includes afield of thistype.

The 4-component SFVec4f was added in X3D. X3D also added double-precision ver-
sions of these vectors: SFVec2d, SFVec3d, SFVec4d.

SFCol or , SFCol or RGBA (X3D)

Syntax of SFCol or isexactly like SFVec3f , but thisfield has aspecial interpretation:
it'san RGB (red, green, blue) color specification. Each component must be between 0.0
and 1.0. For example, thisisayellow color: 1 1 0.

https://castle-engine.io/x3d_time_origin_considered_uncomfortable.php
https://castle-engine.io/x3d_time_origin_considered_uncomfortable.php
https://castle-engine.io/x3d_time_origin_considered_uncomfortable.php
https://castle-engine.io/x3d_time_origin_considered_uncomfortable.php

Overview of VRML

X 3D adds aso 4-component type SFCol or RGBA, that adds al pha (opacity) valueto the
RGB color.

SFRot ati on

Four floating point values specifying rotation around an axis. First three values specify
an axis, fourth value specifies the angle of rotation (in radians).

SFMat ri x3f (X3D), SFvat ri x3d (X3D), SFMvat ri x4f (X3D), SFMat ri x4d (X3D),
SFMat ri x (VRML 1.0)

3x3 and 4x4 matrix types, in single or double precision. Especialy useful when trans-
ferring matrix datato GPU shaders.

VRML 1.0 had also a type named just SFMat ri x, this was equivalent to X3D's SF-
Mat ri x4f .

SFI mage

This field type is used to specify image content for Pi xel Text ur e node in VRML
2.0 (Text ur e2 nodein VRML 1.0). Thisway you can specify texture content directly
in VRML file, without the need to reference any external file. Y ou can create grayscale,
grayscale with alpha, RGB or RGB with alphaimagesthisway. Thisis sometimes com-
fortable, when you must include everything in one VRML file, but beware that it makes
VRML filesvery large (because the color values are specified in plain text, and they are
not compressed in any way). See VRML specification for exact syntax of this field.

An alternative, often better method to “inline” somefilecontentinsideVRML/X3D fileis
to use the data: URI [http://en.wikipedia.org/wiki/Data URI_scheme]. This alows you
to inline file contents everywhere where normallny URI is accepted (for example, you
can use normal | mageText ur e andit'sur| field), soit's more general solution. It's
aso more standard (not specificto VRML/X3D at all). And it allowsto place compressed
data (e.g. compressed PNG, JPG or any other file format, as specified by the mime type
inside URI). Although compressed data will have to be encoded in base64, so it's not
storage-optimal, but still it'susually much better than SFI mage non-compressed format.

Thedat a: URI is supported by most modern VRML/X3D browsers (including every
program using our engine). So it's usually preferred over using SFI mage, for al but
the tiniest images.

SFString

A string, enclosed in double quotes. If you want to include double quote in a string,
you have to precede it with the backslash (\) character, and if you want to include the
backslash in a string you have to write two backsashes. For example:

"This is a string."
"\"To be or not to be\" said the man."

"W ndows filenane is
c:\\3dnodel s\\tree.w| "

Note that in VRML 2.0 this string can contain characters encoded in utf8 2.

2But also note that our engine doesn't support utf8 yet. In particular, when rendering Text node, the string istreated as a sequence
of 8-hit charactersin | SO-8859-1 encoding.

http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme

Overview of VRML

1.2.2.

1.2.3.

SFNode

Thisisaspecia VRML 2.0 field type that contains other node asit's value (or a specia
value NULL). More about thisin Section 1.3, “ Children nodes’.

All names of field types above start with SF, which stands for “single-value field”. Most of
these field types have acounterpart, “ multiple-valuefield”, with aname starting with MF. For
example MFFl oat , M~Long, MFI nt 32, MFVec2f and M~Vec3f . The MF-field valueis
asequence of any number (possibly zero) of singlefield values. For example, M-Vec 3f field
specifiesany number of 3-component vectors and can be used to specify aset of 3D positions.

Syntax of multiple-value fieldsis:
1. Anopening bracket ([).

2. Alistof singlefield values separated by commas (in VRML 1.0) or whitespaces(in VRML
2.0). Notethat in VRML 2.0 comma is also a whitespace, so if you write commas between
values your syntax isvalid in all VRML versions.

3. A closing bracket (]). Note that you can omit both brackets if your MF-field has exactly
onevalue.

Placing fields within nodes

Each node has a set of fields given by VRML specification. VRML file can specify value
of some (maybe all, maybe none) node's fields. Y ou can always leave the value of afield
unspecified in VRML file, and it always is equivalent to explicitly specifying the default
value for given field.

VRML syntax for specifying node fields is simple: within node's braces ({ and }) place
field's name followed by field's value.

Examples

L et's see some exampl es of specifying field values.

Spher e node hasafield named r adi us of type SFFI oat with adefault value 1.0. So the
file below is exactly equivalent to our first sphere example in previous section:

#VRML V1.0 ascii
Sphere {

radi us 1
}

And thisis a sphere with radius 2.0:

#VRML V1.0 ascii
Sphere {

radi us 2
}

Here'saVRML 2.0filethat specifies acylinder that should be rendered without bottom and
top parts (thus creating a tube), with a radius 2.0 and height 4.0. Three SFBool fields of

Overview of VRML

Cyl i nder areused: bott om si de, t op (by default all are TRUE, so actualy we didn't
havetowritesi de TRUE). And two SFFI oat fields, r adi us and hei ght , are used.

Remember that in VRML 2.0 we can't just write the Cyl i nder node. Instead we have to
use the Shape node. The Shape nodehasafield geomnet r y of type SFNode. By default,
value of thisfield is NULL, which means that no shapeis actually defined. We can place our
Cyl i nder node asavalue of thisfield to correctly define a cylinder.

#VRML V2.0 utf8

Shape {
geonetry Cylinder {
si de TRUE
bott om FALSE
top FALSE
radius 2.0
hei ght 10.0
}
}

Figure 1.3. Cylinder example, rendered in wir eframe mode (becauseit's
unlit, non-wir eframe rendering would look confusing)

HeresaVRML 2.0 file that specifies two points. Just like in the previous example, we had
to useaShape node and place Poi nt Set nodeinit'sgeonet ry field. Poi nt Set node,
in turn, has two more SFNode fields: coor d (that can contain Coor di nat e node) and
col or (that can contain Col or node). Coor di nat e node has a poi nt field of type
M-Vec3f — these are positions of defined points. Col or nodehasacol or field of type
MFCol or — these are colors of points, specified in the same order asin the Coor di nat e
node.

Notethat Poi nt Set and Col or nodes havethe samefield name: col or . Inthefirst case,
thisis an SFNode field, in the second caseit's an MFVec 3f field.

#VRML V2.0 utf8

Shape {
geonetry Poi nt Set {
coord Coordinate { point [0 -2 0, 02 0] }
color Color { color [110, 001] }

}

Overview of VRML

}

Figurel.4. VRML pointsexample: yellow point at thebottom, blue point
at thetop

1.3. Children nodes

Now we're approaching the fundamental idea of VRML: some nodes can be placed as a
children of other nodes. We already saw some examples of thisideain VRML 2.0 examples
above: we placed various nodes inside geormret r y field of Shape node. VRML 1.0 hasa
little different way of specifying children nodes (inherited from Inventor format) than VRML
2.0 and X3D — we will see both methods.

1.3.1. Group node examples

In VRML 1.0, you just place children nodes inside the parent node. Like this:
#VRML V1.0 asci
G oup {

Sphere { }
Cube { width 1.5 height 1.5 depth 1.5 }

—

Figure 1.5. A cubeand a spherein VRML 1.0

Overview of VRML

G oup is the simplest grouping node. It has no fields, and it's only purpose is just to treat
a couple of nodes as one node.

Note that in VRML 1.0 it's required that a whole VRML file consists of exactly one root
node, so we actually had to use some grouping node here. For example the following fileis
invalid according to VRML 1.0 specification:

#VRML V1.0 ascii

Sphere { }
Cube { width 1.5 height 1.5 depth 1.5 }

Nevertheless the above example is handled by many VRML engines, including our engine
described in this document.

In VRML 2.0, you don't place children nodes directly inside the parent node. Instead you
place children nodes inside fields of type SFNode (this contains zero (NULL) or one node)
or M~Node (this contains any number (possibly zero) of nodes). For example, in VRML 2.0
Gr oup node hasan MFNode field chi | dr en, sotheexamplefilein VRML 2.0 equivalent
to previous example looks like this:

#VRML V2.0 utf8
G oup {
children [

Shape { geonetry Sphere { } }
Shape { geonetry Box { size 1.5 1.5 1.5} }

]
}

Syntax of MFNode isjust like for other multiple-valued fields: a sequence of values, inside
brackets ([and]).

Example above also shows a couple of other differences between VRML 1.0 and 2.0:
1. InVRML 2.0 we have to wrap Spher e and Box nodesinside a Shape node.
2. Node Cube from VRML 1.0 was renamed to Box in VRML 2.0.

3. Size of the box in VRML 2.0 is specified using si ze field of type SFVec3f , whilein
VRML 1.0 we had three fields (wi dt h, hei ght , dept h) of type SFFI oat .

While we're talking about VRML versions differences, note also that in VRML 2.0 afile
can have any number of root nodes. So actually we didn't have to use G- oup node in our
example, and the following would be correct VRML 2.0 file too:

#VRML V2.0 utf8

Shape { geonetry Sphere { } }
Shape { geonetry Box { size 1.5 1.5 1.5} }

To be honest, we have to point one more VRML difference: as was mentioned before, in
VRML 2.0 shapes are unlit by default. So our VRML 2.0 examples above ook like this:

Overview of VRML

Figure 1.6. An unlit box and a spherein VRML 2.0

To makethem lit, we must assign amaterial for them. In VRML 2.0 you do thisby placing a
Mat er i al nodeinsiderat eri al fieldof Appear ance node. Thenyou place Appear -
ance nodeinside appear ance field of appropriate Shape node. Result looks like this:

#VRML V2.0 utf8

G oup {
children [
Shape {
appear ance Appearance { material Mterial { } }
geonetry Sphere { }

}

Shape {
appear ance Appearance { material Mterial { } }
geonetry Box { size 1.5 1.5 1.5 }

}
]
}

Wedidn't specify any Mat er i al node'sfields, sothedefault propertieswill beused. Default
VRML 2.0 material properties are the same as for VRML 1.0: light gray diffuse color and
aslight ambient color.

Asyou can see, VRML 2.0 description gets significantly more verbose than VRML 1.0, but
it has many advantages:

1. The way how children nodes are specified in VRML 2.0 requires you to always write
an SFNode or M-Node field name (as opposed to VRML 1.0 where you just write the
children nodes). But the advantages are obvious. in VRML 2.0 you can explicitly assign
different meaning to different children nodes by placing them within different fields. In
VRML 1.0 all the children nodes had to be treated in the same manner — the only thing
that differentiated children nodes was their position within the parent.

2. As mentioned earlier, the default behavior of various VRML 2.0 partsis the one that is
the easiest to render. That's why the default behavior is to render unlit, and you have to
explicitly specify material to get lit objects.

Thisisagood thing, since it makes VRML authors more conscious about using features,
and hopefully it will force them to create VRML worlds that are easier to render. In the

Overview of VRML

1.3.2.

case of rendering unlit objects, thisis often perfectly acceptable (or even desired) solution
if the object has a detailed texture applied.

PlacingtheMat er i al nodeinsidethe SFNode field of Appear ance, and then placing
the Appear ance node inside the SFNode field of Shape may seem like a “bondage-
and-disciplinelanguage’, but it allows various future enhancements of the language with-
out breaking compatibility. For example you could invent a node that allows to specify
materials using a different properties (like by describing it's BRDF function, useful for
rendering realistic images) and then just alow this node as a value for the mat er i al
field.

Scenario described above actually happened. First versions of VRML 97 specification
didn't include geospatial coordinates support, including a node GeoCoor di nat e. A
nodel ndexedFaceSet hasafield coor d used to specify aset of pointsfor geometry,
and initially you could place a Coor di nat e node there. When specification of geospa-
tial coordinates support was formulated (and added to VRML 97 specification as optional
for VRML browsers), al that had to be changed was to say that now you can place Geo-
Coor di nat e everywhere where earlier you could use only Coor di nat e.

4. TheShape nodein VRML 2.0 contains almost whole information needed to render given

shape. Thismeansthat it'seasier to create aVVRML rendering engine. Wewill contrast this
with VRML 1.0 approach that requires alot of state information in Section 1.5, “VRML
1.0 state”.

The Transform node

Let'stakeal ook at another grouping node: VRML 2.0 Tr ansf or mnode. Thisnhode specifies
atransformation (amix of atranslation, arotation and ascale) for all it's children nodes. The
default field values are such that no transformation actually takes place, because by default
wetranslate by (0, 0, 0) vector, rotate by zero angle and scale by 1.0 factor. This means that
the Tr ansf or mnode with al fields left as default is actually equivalent to aGr oup node.

Example of asimple tranglation:

#VRML V2.0 utf8

Shape {

}

appear ance Appearance { material Mterial { } }
geonetry Box { }

Transform {

}

translation 5 0 0
chil dren Shape {

appear ance Appearance { material Mterial { } }
geonetry Sphere { }

}

10

Overview of VRML

Figure 1.7. A box and atrandated sphere

Note that a child of a Tr ansf or mnode may be another Tr ansf or mnode. All transfor-
mations are accumulated. For example these two files are equivalent:

#VRML V2.0 utf8

Shape {
appearance Appearance { material Mterial { } }
geonetry Box { }

}

Transform {
translation 5 0 0
children [
Shape {
appearance Appearance { material Mterial { } }
geonetry Sphere { }
}

Transform {
translation 5 0 0
scale 1 3 1
chil dren Shape {
appear ance Appearance { material Mterial { } }
geonetry Sphere { }
}
}
]
}

#VRML V2.0 utf8

Shape {
appear ance Appearance { material Mterial { } }
geonetry Box { }

}

Transform {
translation 5 0 0
chil dren Shape {
appear ance Appearance { material Mterial { } }
geonetry Sphere { }
}

11

Overview of VRML

}

Transform {
translation 10 0 O
scale 1 3 1
chil dren Shape {
appear ance Appearance { material Mterial { } }
geonetry Sphere { }
}
}

Figurel.8. A box, atranslated sphere, and atranslated and scaled sphere

1.3.3. Other grouping nodes

* A Swi t ch node alowsyou to choose only one (or none) from children nodesto bein the
active (i.e. visible, participating in collision detection etc.) part of the scene. Thisis useful
for various scripts and it's also useful for hiding nodes referenced later — we will see an
example of thisin Section 1.4, “DEF / USE mechanism”.

* A Separator andaTr ansf or nSepar at or nodesin VRML 1.0. We will see what
they doin Section 1.5, “VRML 1.0 state”.

* A LOD node (the name is an acronym for level of detail) specifies a different versions of
the same object. Theintention isthat all children nodes represent the same object, but with
different level of detail: first node is the most detailed one (and difficult to render, check
for collisions etc.), second one is less detailed, and so on, until the last node has the least
details (it can even be empty, which can be expressed by a G- oup node with no children).
VRML browser should choose the appropriate children to render based on the distance
between the viewer and designated center paint.

e ACollisionnodeisavailablein VRML 2.0 and X3D. It's very useful to disable colli-
sions for particular shapes (visible but not collidable geometry), or to specify a “proxy”
shape to be used for collisions. “Proxy” can be used to perform collisions with a compli-
cated 3D object by a simpler shape, for example a complicated statue of a human could
be surrounded by a simple box proxy for the sake of collisions. Also, this can be used to
make collidable but invisible geometry.

12

Overview of VRML

1.4. DEF / USE mechanism

VRML nodes may be named and later referenced. This allows you to reuse the same node
(which can beany VRML nodetype— like ashape, amaterial, or even awhole group) more
than once. The syntax is simple: you name a node by writing DEF <node- nane> before
node type. To reuse the node, just write USE <node- nane>. This mechanismisavailable
inal VRML versions.

Here's a simple example that uses the same Cone twice, each time with adifferent material
color.

#VRML V2.0 utf8

Shape {
appear ance Appear ance {
material Material { diffuseColor 1 1 0 }

}
geonetry DEF NanmedCone Cone { height 5 }

}

Transform {
translation 5 0 0
chil dren Shape {
appear ance Appear ance {
material Material { diffuseColor 0 O 1 } }
geonetry USE NanmedCone

}
}

Figure 1.9. Two cones with different materials

Using DEF/ USE mechanism makesyour VRML filessmaller and easier to author, and it also
alows VRML implementations to save resources (memory, loading time...). That's because
VRML implementation can alocate the node once, and then just copy the pointer to this
node. VRML specifications are formulated to make this approach always correct, even when
mixed with features like scripting or sensors. Note that some nodes can “ pull” additional data
with them (for example | mageText ur e nodes will load texture image from file), so the
memory saving may be even larger. Consider these two VRML files:

#VRML V2.0 utf8

13

Overview of VRML

Shape {
appear ance Appear ance {
t ext ure DEF Sanpl eText ure
| mmgeTexture { url "../textures/test texture.png" }

}
geonetry Box { }

}

Transform {
translation 5 0 O
chil dren Shape {
appear ance Appearance {
texture USE Sanmpl eText ure
}
geonetry Sphere { }
}
}

#VRML V2.0 utf8

Shape {
appear ance Appear ance {
texture | mageTexture { url
}

geonetry Box { }
}

Transform {
translation 5 0 0
chil dren Shape {
appear ance Appear ance {
texture | mageTexture { url

}
geonetry Sphere { }

../textures/test texture.png" }

../textures/test texture.png" }

}
}

Figure 1.10. A box and a tranglated sphere using the same texture

Both files above ook the same when rendered, but in the first case VRML implementation
loads the texture only once, since we know that this is the same texture node 3

3 Actual ly, in the second case, our engine can also figure out that thisis the same texture filename and not load the texture twice.
But the first case is much “cleaner” and should be generally better for all decent VRML implementations.

14

Overview of VRML

Note that the first node definition, with DEF keyword, not only names the node, but also
includes it in the file. Often it's more comfortable to first define a couple of named nodes
(without actually using them) and then use them. Y ou can use the Swi t ch node for this —
by default Swi t ch node doesn't include any of it's children nodes, so you can write VRML
filelike this:

#VRML V2.0 utf8

Switch {
choi ce [
DEF RedSphere Shape {
appear ance Appearance {
material Material { diffuseColor 1 0 0 } }
geonetry Sphere { }
}
DEF GreenSphere Shape {
appear ance Appearance {
material Material { diffuseColor 0 1 0 } }
geonetry Sphere { }
}
DEF Bl ueSphere Shape {
appear ance Appearance {
material Material { diffuseColor 0 0 1 } }
geonetry Sphere { }

}
DEF SphereCol um G oup {
children [
Transform{ translation O -5 O children USE RedSphere }
Transform { translation O O O children USE G eenSphere }
Transform{ translation O 5 O children USE Bl ueSphere }
]
}

]
}

Transform{ translation -5 0 O children USE SphereCol umm }
Transform { translation O O O children USE SphereCol um }
Transform{ translation 5 0 O children USE SphereCol umm }

Figure 1.11. Three columns of three spheres

One last example shows a reuse of Coor di nat e node. Remember that a couple of sec-
tions earlier we defined asimple Poi nt Set . Poi nt Set node hasan SFNode field named

15

Overview of VRML

coor d. You can place there a Coor di nat e node. A Coor di nat e node, in turn, has
apoi nt field of type SFVec3f that allows you to specify point positions. The obvious
guestion is “Why all this complexity? Why not just say that coor d field is of SFVec 3f

type and directly include the point positions?’. One answer was given earlier when talking
about grouping nodes: thisallowed VRML specification for painless addition of GeoCoor -

di nat e asan aternative way to specify positions. Another answer is given by the example
below. Asyou can see, the same set of positions may be used by acouple of different nodes”.

#VRML V2.0 utf8

Shape {
appear ance Appearance { material Mterial { } }
geonetry | ndexedFaceSet {
coord DEF Tower Coordi nates Coordi nate {
poi nt [
4.157832 4.157833 - 1. 000000,
4.889094 3.266788 -1.000000,

coordl ndex [
63 0 31 32 -1,
31 30 33 32 -1

Transform {
translation 30 0 O
chil dren Shape {
geonetry | ndexedLi neSet {
coordl ndex [
63 0 31 32 63 -1
31 30 33 32 31 -1,

coord USE Tower Coor di nat es

}
}
}

Transform {
translation 60 0 O
chil dren Shape {
geonetry Poi nt Set {
coord USE Tower Coor di nat es
}
}
}

4 do not cite full VRML source code here, as it includes a long list of coordinates and indexes generated by Blender exporter.
See VRML files distributed with this document: full sourceisin the fileexanpl es/ reuse_coordi nate. wrl .

16

Overview of VRML

Figure 1.12. Faces, lines and point sets rendered using the same
Coor di nat e node

1.4.1. VRML file as a graph

Now that we know all about children relationships and DEF / USE mechanism, we can grasp
the statement mentioned at the beginning of thischapter: every VRML fileisadirected graph
of nodes. It doesn't have cycles, athough if we will forget about direction of edges (treat it
as an undirected graph), we can get cycles (because of DEF / USE mechanism).

Note that VRML 1.0 file must contain exactly one root node, while VRML 2.0 fileis a
sequence of any number of root nodes. So, being precise, VRML graph doesn't have to be a
connected graph. But actually our engine when reading VRML file with many root nodesjust
wrapsthem in an “invisible” G- oup node. This special G oup node acts just like any other
group node, but it's not written back to the file (when e.g. using our engine to pretty-print
VRML files). This way, internally, we aways see VRML file as a connected graph, with
exactly one root node.

1.5. VRML 1.0 state

In previous sections most of the examples were given only in VRML 2.0 version. Partially
that's because VRML 2.0 is just newer and better, so you should use it instead of VRML
1.0 whenever possible. But partially that was because we avoided to explain one important
behavior of VRML 1.0. Inthissectionwell fill thegap. Evenif you'renot interestedin VRML
1.0 anymore, this information may help you understand why VRML 2.0 was designed the
way it was, and why it's actually better than VRML 1.0. That's because part of the reasons
of VRML 2.0 changes were to avoid the whole issue described here.

Historically, VRML 1.0 was based on Inventor file format, and Inventor file format was de-
signed specifically with OpenGL implementation in mind. Those of you who do any pro-
gramming in OpenGL know that OpenGL works as astate machine. Thismeansthat OpenGL
remembers a lot of “global” settings °. When you want to render a vertex (aka point) in
OpenGL, you just call one simple command (gl Ver t ex), passing only point coordinates.
And the vertex is rendered (along with a line or even atriangle that it produces with other
vertexes). What color does the vertex has? The last color specified by gl Col or call (or

5 Actually, they are remembered for each OpenGL context. And, ideally, they are partially “remembered” on graphic board. But
we limit our thinking here only to the point of view of atypical program using OpenGL.

17

Overview of VRML

gl Mat eri al , mixed with lights). What texture coordinate does it have? Last texture coor-
dinate specified in gl TexCoor d call. What texture does it use? Last texture bound with
gl Bi ndText ur e. We can see a pattern here: when you want to know what property our
vertex has, you just have to check what value we last assigned to this property. When we
talk about OpenGL state, we talk about al the “last gl Col or ", “last gl TexCoor d” etc.
values that OpenGL has to remember.

Inventor, and then VRML 1.0, followed a similar approach. “What material does a sphere
use?’ The one specified inthe last Mat er i al node. Take alook at the example:

#VRML V1.0 ascii
G oup {
Default material will be used here:
Sphere { }
DEF RedMWaterial Material { diffuseColor 1 0 O }

Transform{ translation 5 0 0 }

This uses the |last material : red
Sphere { }

Transform{ translation 5 0 0 }

This still uses uses the red materi a
Sphere { }

Material { diffuseColor O O 1 }

Transform{ translation 5 0 0 }
Material changed to bl ue
Sphere { }

Transform{ translation 5 0 0 }
Still blue...
Sphere { }

USE RedMateri a

Transform{ translation 5 0 0 }
Red again
Sphere { }

Transform{ translation 5 0 0 }
Still red.
Sphere { }

18

Overview of VRML

Figure 1.13. Sphereswith various material in VRML 1.0

Similar answers are given for other questions in the form “What is used?’. Let's compare
VRML 1.0 and 2.0 answers for such questions:

» What texture is used?
VRML 1.0 answer: Last Text ur e2 node.
VRML 2.0 answer: Node specified in enclosing Shape appearance'st ext ur e field.
» What coordinates are used by | ndexedFaceSet ?
VRML 1.0 answer: Last Coor di nat e3 node.
VRML 2.0 answer: Node specified in coor d field of given | ndexedFaceSet .
» What font isused by by Asci i Text node (renamed to just Text in VRML 2.0)?
VRML 1.0 answer: Last Font St yl e node.
VRML 2.0 answer: Node specifiedinf ont St yl e field of given Text node.

So VRML 1.0 approach maps easily to OpenGL. Simple VRML implementation can just
traverse the scene graph, and for each node do appropriate set of OpenGL calls. For example,
Mat eri al nodewill correspond to acouple of gl Mat eri al and gl Col or cals. Tex-

t ur e2 will correspond to binding prepared OpenGL texture. Visible geometry nodes will
cause rendering of appropriate geometry, and so last Mat eri al and Text ur e2 settings
will be used.

In our example with materials above you can also see another difference between VRML 1.0
and 2.0, also influenced by the way things are donein OpenGL.: the way Tr ansf or mnode
isused. INnVRML 2.0, Tr ansf or maffected it'schildren. In VRML 1.0, Tr ansf or mnode
isnot supposed to have any children. Instead, it affectsall subsequent nodes. If wewould like
totrandate last exampleto VRML 2.0, each Tr ansf or mnode would haveto be placed asa
last child of previous Tr ansf or mnode, thus creating adeep nodes hierarchy. Alternatively,
we could keep the hierarchy shallow and just use Transform { translation 5 0
0 ... } forthefirsttime thenTransform{ translation 10 0 O ... },then
Transform{ translation 15 0 0 ... } andsoon.

Thismeansthat smple VRML 1.0 implementation will just call appropriate matrix transfor-
mations when processing Tr ansf or mnode. In VRML 1.0 there are even more specialized

19

Overview of VRML

transformation nodes. For example a node Tr ansl at i on that has a subset of features of
full Tr ansf or mnode: it can only trandate. Such Tr ansl at i on has an excellent, trivia
mapping to OpenGL: just call gl Tr ansl at e.

There's one more important feature of OpenGL *“ state machine” approach: stacks. OpenGL
has amatrix stack (actually, three matrix stacks for each matrix type) and an attributes stack.
Asyou can guess, there are nodesin VRML 1.0 that, when implemented in an easy way, map
perfectly to OpenGL push/pop stack operations. Separ at or and Tr ansf or nSepar a-

t or . WhenyouuseG oup nodein VRML 1.0, the properties(likelast used Mat er i al and
Text ur e2, and also current transformation and texture transformation) “leak” outside of
Gr oup node, to al subsequent nodes. But when you use Separ at or , they do not leak out:
al transformations and “who's the last material/texture node” properties are unchanged after
we leave Separ at or node. So simple Separ at or implementation in OpenGL istrivial:

1. Atthebeginning, usegl PushAt t ri b (savingall OpenGL attributesthat can be changed
by VRML nodes) and gl PushMat ri x (for both modelview and texture matrices).

2. Then process all children nodes of Separ at or .
3. Thenrestore state by gl PopAttri b and gl PopMatri x calls.

Tr ansf or mSepar at or is a cross between a Separ at or and a G oup: it saves on-
ly transformation matrix, and the rest of the state can “leak out”. So to implement this in
OpenGL, you just call gl PushMat ri x (on modelview matrix) before processing children
and gl PopMat ri x after.

Below is an example how various VRML 1.0 grouping nodes allow “leaking”. Each column
starts with a standard Spher e node. Then we enter some grouping node (from the left:
G oup, Tr ansf or nepar at or and Separ at or). Inside the grouping node we change
material, apply scaling transformation and put another Spher e node— middle row always
contains a red large sphere. Then we exit from grouping node and put the third Spher e
node. How does this sphere ook like depends on used grouping node.

#VRML V1.0 asci

Separ at or {
Sphere { }
Transform{ translation 0 -3 0 }
G oup {
Material { diffuseColor 1 0 O }
Transform { scal eFactor 2 2 2 }
Sphere { }

A Group, so both Material change and scaling "l eaks out"
Transform{ translation 0 -3 0 }
Sphere { }

}

Transform{ translation 5 0 0 }

Separ at or {
Sphere { }
Transform{ translation O -3 0 }
Tr ansf or nSepar at or {
Material { diffuseColor 1 0 O }
Transform { scal eFactor 2 2 2 }

20

Overview of VRML

Sphere { }
}
A TransfornBSeparator, so only Material change "Il eaks out™
Transform { translation 0 -3 0 }
Sphere { }

}

Transform{ translation 5 0 0 }

Separat or {
Sphere { }
Transform { translation O -3 0 }
Separ at or {
Material { diffuseColor 1
Transform { scal eFactor 2
Sphere { }

00}
22}

A Separator, so nothing "l eaks out".

The |l ast sphere is identical to the first one.
Transform { translation 0 -3 0 }

Sphere { }

}

Figure 1.14. An example how properties “leak out” from various
grouping nodesin VRML 1.0

1.5.1. Why VRML 2.0 is better

There are some advantages of VRML 1.0 “state” approach:
1. It maps easily to OpenGL.

Such easy mapping may be also quite efficient. For example, if two nodes use the same
Mat eri al node, we can just change OpenGL material once (at the time Mat er i al
node is processed). VRML 2.0 implementation must remember last set Mat er i al node
to achieve this purpose.

2. It'sflexible. The way transformations are specified in VRML 2.0 forces us often to create
deeper node hierarchiesthanin VRML 1.0.

Andin VRML 1.0 we can easier share materials, textures, font styles and other properties
among a couple of nodes. In VRML 2.0 such reusing requires naming nodes by DEF /

21

Overview of VRML

USE mechanism. In VRML 1.0 we can simply let a couple of nodes have the same node
astheir last Mat er i al (or similar) node.

But there are aso serious problems with VRML 1.0 approach, that VRML 2.0 solves.

1. The argumentation about “flexibility” of VRML 1.0 above looks similar to argumenta-
tion about various programming languages (...programming languages that should remain
nameless here...), that areindeed flexible but also allow the programmer to “ shoot himsel f
inthefoot”. It's easy to forget that you changed some material or texture, and accidentally
affect more than you wanted.

Compare this with the luxury of VRML 2.0 author: whenever you start writing a Shape
node, you always start with a clean state: if you don't specify a texture, shape will not
be textured, if you don't specify a material, shape will be unlit, and so on. If you want
to know how given | ndexedFaceSet will look like when rendered, you just have to
know it's enclosing Shape node. More precisely, the only things that you have to know
for VRML 2.0 node to render it are

» enclosing Shape node,
« accumulated transformation from Tr ansf or mnodes,

» andsome*“globa” properties: lightsthat affect this shape and fog properties. | call them
“global” because usually they are applied to the whole scene or at |east large part of it.

Ontheother hand, VRML 1.0 author or reader (human or program) must carefully analyze
the code before given node, looking for last Mat er i al node occurrence etc.

2. The argumentation about “simple VRML 1.0 implementation” misses the point that such
simple implementation will in fact suffer from a couple of problems. And fixing these
problemswill infact force thisimplementation to switch to non-trivial methods. The prob-
lemsinclude:

» OpenGL stacks sizes are limited, so a simple implementation will limit allowed depth
of Separ at or and Tr ansf or nSepar at or nodes.

 If wewill change OpenGL state each time we process a state-changing node, then we
canwastealot of timeand resourcesif actually there are no shapes using given property.
For example this code

Separ at or {
Texture2 { filename "texture.png" }

}

will trick a naive implementation into loading from file and then loading to OpenGL
context a completely useless texture data.

This seems like an irrelevant problem, but it will become a large problem as soon as
we will try to use any technique that will have to render only parts of the scene. For
example, implementing material transparency using OpenGL blending requires that
first all non-transparent shapes are rendered. Also implementing culling of objectsto a
camera frustum will make many shapes in the scene ignored in some frames.

3. Last but not least: in VRML 1.0, grouping nodes must process their children in order, to
collect appropriate state information needed to render each geometry. InVRML 2.0, there
is no such requirement. For example, to render aG oup node in VRML 2.0, implemen-

22

Overview of VRML

tation can process and render children nodes in any order. Like said above, VRML 2.0
must only know about current transformation and global things like fog and lights. The
rest of information needed is always contained within appropriate Shape node.

VRML 2.0 implementation can even ignore some children in Gr oup node if it's known
that they are not visible.

Example situations when implementation should be able to freely choose which shapes
(and in what order) are rendered were given above: implementing transparency using
blending, and culling to camera frustum.

More about the way how we solved this problem for both VRML 1.0 and 2.0 in Sec-
tion 3.10, “VRML scene”’. More about OpenGL blending and culling to frustum in Sec-
tion 6.4, “VRML scene class for OpenGL”.

1.6. Other important VRML features

1.6.1.

Now that we're accustomed with VRML syntax and concepts, |et's take a quick look at some
notable VRML features that weren't shown yet.

Inline nodes

A powerful tool of VRML isthe ability to include one model as a part of another. In VRML
2.0wedothisby | nl i ne node. It'sur | field specifiesthe URL (possibly relative) of VRML
fileto load. Note that our engine doesn't actually support URLs right now and treats this just
asafile name.

The content of referenced VRML fileis placed at the position of given | nl i ne node. This
means that you can apply transformation to inlined content. This also means that including
the same file more than once is sensible in some situations. But remember the remarks in
Section 1.4, “DEF / USE mechanism”: if you want to include the same file more than once,
you should namethel nl i ne nodeand then just reuseit. Such reusewill conserve resources.

url fiddisactually MFSt ri ng and is a sequence of URL values, from the most to least
preferred one. So VRML browser will try to load files from given URLSs in order, until a
valid file will be found.

In VRML 1.0 the node is called WWA nl i ne, and the URL (only oneis allowed, it's SF-
St ri ng field) is specified in thefield nane.

When using our engine you can mix VRML/X3D versions and include VRML 1.0 file from
VRML 2.0, or X3D, or the other way around. Moreover, you can include other 3D formats
(like 3DS and Wavefront OBJ) too.

An example:

#VRML V2.0 utf8
DEF MyInline Inline { url "reuse cone.wl" }

Transform {
translation 1 0 0
rotation 1 0 0 -0.2
children [

USE Myl nline

23

Overview of VRML

Transform {
translation 1 0 O
rotation 1 0 0 -0.2
children [

USE Myl nline

Transform {
translation 1 0 O
rotation 1 0 0 -0.2
children [

USE Myl nline

Transform {
translation 1 0 O
rotation 1 0 0 -0.2

children [
USE Myl nline
| S O S

Figurel.15. Our earlier exampleof reusing coneinlined a coupleof times,
each timewith a slight trandlation and rotation

1.6.2. Texture transformation

VRML alows you to specify atexture coordinate transformation. This allows you to trans-
late, scale and rotate visible texture on given shape.

In VRML 1.0, you do this by Text ur e2Tr ansf or mnode — this works analogous to
Tr ansf or m but transformations are only 2D. Texture transformationsin VRML 1.0 accu-
mulate, just like normal transformations. Here's an example:

#VRML V1.0 ascii

G oup {
Texture2 { filename "../textures/test texture.png" }

Cube { }
Transform{ translation 3 0 0 }

Separat or {

24

Overview of VRML

transl ate texture
Texture2Transform{ translation 0.5 0.5 }
Cube { }

}

Transform{ translation 3 0 0 }

Separat or {
rotate texture by Pi/4
Text ure2Transform { rotation 0.7853981634 }
Cube { }

}

Transform{ translation 3 0 0 }

Separ at or {
scal e texture
Text ure2Transform { scal eFactor 2 2 }
Cube { }

Transform { translation 3 0 O }

rotate texture by Pi/4.
Texture transformati on accunul ates, so this wll
be both scal ed and rot at ed.
Text ure2Transform { rotation 0.7853981634 }
Cube { }
}
}

Figure 1.16. Textured cube with varioustexture transformations

Remember that we transform texture coordinates, so e.g. scale 2x means that the texture
appears 2 times smaller.

VRML 2.0 proposes a different approach here: We have similar Text ur eTr ansf orm
node, but we can use it only asavaue for t ext ur eTr ansf or mfield of Appear ance.
This also means that there is no way how texture transformations could accumulate. Here's
aVRML 2.0 file equivalent to previous VRML 1.0 example:

#VRML V2.0 utf8

Shape {
appear ance Appear ance {

25

Overview of VRML

t ext ure DEF Sanpl eText ure
| mmgeTexture { url "../textures/test texture.png" }

}
geonetry Box { }

}

Transform {
translation 3 0 O
chil dren Shape {
appear ance Appearance {
texture USE Sanpl eText ure
transl ate texture
textureTransform TextureTransform{ translation 0.5 0.5 }
}
geonetry Box { }
}
}

Transform {
translation 6 0 O
chil dren Shape {
appear ance Appear ance {
texture USE Sampl eText ure
rotate texture by Pi/4
textureTransform TextureTransform { rotation 0.7853981634 }
}
geonetry Box { }
}
}

Transform {
translation 9 0 O
chil dren Shape {
appear ance Appear ance {
texture USE Sanpl eText ure
scal e texture
textureTransform TextureTransform{ scale 2 2 }
}
geonetry Box { }
}
}

Transform {
translation 12 0 O
chil dren Shape {
appear ance Appear ance {
texture USE Sampl eText ure
scale and rotate the texture.
There's no way to accunul ate texture transformations,
so we just do both rotation and scaling by
Text ureTransform node bel ow.
t ext ur eTr ansf or m Text ur eTr ansf orm {
rotation 0.7853981634
scale 2 2

}

}
geonetry Box { }

}

26

Overview of VRML

}

1.6.3. Navigation

Y ou can specify various navigation information using the Navi gat i onl nf o node.

t ype field describes preferred navigation type. Y ou can “EXAMINE” model, “WALK”
in the model (with collision detection and gravity) and “FLY” (collision detection, but no

gravity).

e avat ar Si ze field setsviewer (avatar) sizes. Thesetypically haveto be adjusted for each
world to “feel right”. Although you should note that VRML generally suggests to treat
length 1.0 in your world as“ 1 meter”. If you will design your VRML world following this
assumption, then default avat ar Si ze will feel quite adequate, assuming that you want
the viewer to have human sizein your world. Viewer sizes are used for collision detection.

» Viewer sizetogether withvi si bi |ityLi m t may bealso usedto set VRML browsers
Z-buffer near and far clipping planes. This is the case with our engine. By default our
enginetriesto calculate sensible valuesfor near and far based on scene bounding box size.

* You can also specify moving speed (speed field), and whether head light ison (head-
l'i ght field).

To specify default viewer position and orientation in the world you use Vi ewpoi nt node.
InVRML 1.0, instead of Vi ewpoi nt you have Per specti veCaner a and Ot hogo-
nal Caner a (in VRML 2.0 viewpoint is always perspective). Viewpoint and cameranodes
may be generally specified anywhere in the file. The first viewpoint/camera node found in
the file (but only in the active part of the file — e.g. not in inactive children of Swi t ch)
will be used as the starting position/orientation. Note that viewpoint/camera nodes are also
affected by transformation.

Finally, notethat my VRML viewer view3dscene[https://castle-engine.io/view3dscene.php]
has a useful function to print VRML viewpoint/camera nodes ready to be pasted to VRML
file, see menu item “ Console’ -> “Print current camera node”.

Here's an example file. It defines a viewpoint (generated by vi ew3dscene) and a navi-
gation info and then includes actual world geometry from other file (shown in our earlier
example about inlining).

#VRML V2.0 utf8

Vi ewpoi nt {
position 11.832 2.897 6.162
orientation -0.463 0.868 0.172 0.810

}

Navi gati onl nfo {
avatarSize [0.5, 2]

speed 1.0
headl i ght TRUE
}
Inline { url "inline.wl" }

27

https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php

Overview of VRML

Figure1.17. Viewpoint defined for our previousexamplewith multiplied
cones

1.6.4. IndexedFaceSet features

I ndexedFaceSet nodes (and a couple of other nodesin VRML 2.0 like El evat i on-
G i d) have some notable features to make their rendering better and more efficient:

Y ou can use non-convex facesif you set convex fieldto FALSE. It will be VRML brows-
er'sresponsibility to correctly triangulate them. By default faces are assumed to be convex
(following the general rule that the default behavior isthe easiest one to handle by VRML
browsers).

By default shapes are assumed to be sol i d which allows to use backface culling when
rendering them.

If you don't supply pre-generated normal vectorsfor your shapes, they will be calculated by
the VRML browser. Y ou can control how they will be calculated by thecr easeAngl e
field: if the angle between adjacent faces will be less than specified cr easeAngl e, the
normal vectorsin appropriate points will be smooth. This allows you to specify preferred
“smoothness’ of theshape. INVRML 2.0by defaultcr easeAngl e iszero(soall normals
are flat; again this follows the rule that the default behavior is the easiest one for VRML
browsers). See example below.

For VRML 1.0 the cr easeAngl e, backface culling and convex faces settings are con-
trolled by ShapeHi nt s node.

All VRML shapes have some sensible default texture mapping. This means that you don't
haveto specify texture coordinatesif you want the texture mapped. Y ou only have to spec-
ify some texture. For | ndexedFaceSet the default texture mapping adjusts to shape's
bounding box (see VRML specification for details).

Here's an example of the cr easeAngl e use. Three times we define the same geometry in
| ndexedFaceSet node, each timeusing different cr easeAngl e values. Theleft tower
usescr easeAngl e 0, so all faces are rendered flat. Second tower uses cr easeAngl e
1 and it looks good — smaooth where it should be. The third tower usescr easeAngl e 4,
which just means that normals are smoothed everywhere (this case is actually optimized in-
sideour engine, soit'scal cul ated faster) — it looks bad, we can seethat normal s are smoothed
where they shouldn't be.

#VRML V2.0 utf8

28

Overview of VRML

Vi ewpoi nt {
position 31.893 -69. 771 89. 662
orientation 0.999 0.022 -0.012 0.974

}

Transform {
chil dren Shape {
appear ance Appearance { material Mterial { } }
geonetry | ndexedFaceSet ({
coord DEF Tower Coor di nat es Coordi nate {
poi nt [

4.157832 4.157833 -1. 000000,
4,889094 3.266788 -1.000000,

coordl ndex [
63 0 31 32 -1,
31 30 33 32 -1,

creaseAngle 0O

}
}
}

Transform {
translation 30 0 O
chil dren Shape {
appear ance Appearance { material Miterial { } }
geonetry | ndexedFaceSet {
coor dl ndex [
63 0 31 32 -1,
31 30 33 32 -1,

coord USE Tower Coor di nat es
creaseAngle 1

}
}
}

Transform {
translation 60 0 O
chil dren Shape {
appear ance Appearance { material Mterial { } }
geonetry | ndexedFaceSet {
coor dl ndex [
63 0 31 32 -1,
31 30 33 32 -1,

coord USE Tower Coor di nat es
creaseAngle 4
}
}

29

Overview of VRML

}

Figure 1.18. Threetowerswith variouscr easeAngl e settings

1.6.5. Prototypes

Prototypes
These constructions define new VRML nodes in terms of already available ones. The
ideais basically like macros, but it works on VRML nodes level (not on textual level,
even not on VRML tokenslevel) soit'sreally safe.

External prototypes
These constructions define syntax of new VRML nodes, without defining their imple-
mentation. The implementation can be specified in other VRML file (using normal pro-
totypes mentioned above) or can be deduced by particular VRML browser using some
browser-specific means (for example, abrowser may just have some non-standard nodes
built-in). If a browser doesn't know how to handle given node, it can at least correctly
parse the node (and ignore it).

For example, many VRML browsers handle some non-standard VRML nodes. If you use
these nodes and you want to make your VRML files at least readable by other VRML
browsers, you should declare these non-standard nodes using external prototypes.

Even better, you can provide alist of proposed implementations for each external proto-
type. They are checked in order, VRML browser should chose the first implementation
that it can use. So you can make the 1st item a URN that is recognized only by your
VRML browser, and indicating built-in node implementation. And the 2nd item may
point to a URL with another VRML file that at least partialy emulates the functionality
of this non-standard node, by using normal prototype. This way other VRML browsers
will be able to at least partially make use of your node.

Our engine handles prototypes and external prototypes perfectly (since around Septem-
ber 2007). We have some VRML/X3D extensions (see Castle Game Engine extensions
list [https://castle-engine.io/x3d_extensions.php]), and they can be declared as external pro-
totypes with URN like "ur n: cast | e- engi ne. sour cef or ge. net : node: Kam
bi CctreeProperti es". Soother VRML browsers should be ableto at |east parse them.

1.6.6. X3D features

X3D is adirect successor to VRML 2.0. X3D header even openly specifies #X3D V3. 0
ut f 8 (or 3. 1, or 3. 2) admitting that it's just a 3rd version of VRML.

30

https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/x3d_extensions.php

Overview of VRML

X3D is amost absolutely compatible with VRML 2.0, meaning that aimost all VRML 2.0
files are aso correct X3D files— assuming that we change the header to indicate X3D and
add trivial PROFI LE line. Minor incompatible changes include renaming of access speci-
fiers (exposedFi el d becomesi nput Qut put , event | n becomesi nput Onl y etc.),
and changes to some field names (Swi t ch. choi ce and LOD. | evel were renamed to
Swi tch. chi I drenandLOD. chi | dr en, thismade the “ containerField” mechanism of
X3D XML encoding more useful). There was no revolutionary compatibility break on the
road to X3D, and everything that we said in this chapter about VRML 2.0 applied also to
X3D.

Some of the improvements of X3D:

Encodings
VRML classic encoding is for compatibility with VRML 2.0.

XML encoding allows to validate and process X3D files with XML tools (like XML
Schema, XSLT). It aso alows easier implementation, since most programming lan-
guagesinclude XML reading/writing support (usually usingthe DOM API). Soyou don't
have to write lexer and parser (like for classic VRML).

Finally, binary encoding (not implemented in our engine yet) allows smaller files and
makes parsing faster.

There is no requirement to support all three encodings in every X3D browser — you
only haveto support one. XML encoding isthe most popular and probably the simpler to
implement, so thisisthe suggested choice. All encodingsare completely interchangeable,
which means that we can convert X3D files back and forth from any encoding to any
other, and no information is lost. Many tools exist to convert from one encoding to the
other (our own engine can be used to convert between XML and classic encoding, see
https:.//castle-engine.io/view3dscene.php#section_converting).

Components and profiles
VRML 2.0 standard was already quite large, and implementing full VRML 2.0 browser
was adifficult and long task. At the same time, pretty much everyone who used VRML
for more advanced tasks wanted to extend it in some way. So it seemed that the standard
was large, and it had to grow even larger... clearly, there was a problem.

Thefirst part of the solutionin X3D isto break the standard into many small components.
Component is just a part of the specification dealing with particular functionality. The
crucia part of each component are it's nodes, and some specification how these nodes
cooperatewith therest of the scene. For example, thereisacomponent with 2D geometry,
called Georret r y2D. Thereisacomponent providing high-level shaders(GLSL, HLSL,
Cqg) support called Shader s. Currently (as of X3D edition 2) there are 34 components
defined by the specification. Every node is part of some component. Naturally, some
components depend on other components.

Some components are complicated enough to be divided even more — into levels. For
example, implementing component on lower level may mean that some node is only
optionally supported, or maybe some of it's fields may be ignored, or maybe there may
exist some limits on the data. For example, for the Net wor ki ng component, level 1
means that program must support only local (fi |l e:/ /) absolute URLSs. For level 2,
additionally ht t p: // must be supported, and URLs may berelative. On level 4 secure
htt ps: // must be additionally supported.

31

https://castle-engine.io/view3dscene.php#section_converting

Overview of VRML

The author of X3D file can request, at the beginning of X3D file, which components
and on what levels must be supported to handle thisfile. For example, in classic VRML
encoding lines

COMPONENT Net wor ki ng: 2
COVPONENT NURBS: 1

mean that networking component must be support relative and and absolute ht t p: / /
andfile:// URLsandbasic NURBS support is required.

Now, the components and levels only divide the standard into small parts. It would be a
nightmare to specify at the beginning of each file all required components. It would also
do no good to compatibility across X3D browsers: if every browser would be alowed
to support any set of any components, we would have no guarantee that even the most
basic X3D file is supported by reasonable X3D browsers. So the second part of the so-
lution are profiles. Profile is basically a set of components and their levels, and some
additional conditions. There are only few profiles (six, as of X3D edition 2), like Cor e,
I nt erchange, I nteractive and Ful | . Theideais that when browser claims “I
support Interchange profile”, then we already know quite a lot about what it supports
(Interchange includes most of the static 3D data), and what it possibly doesn't support
(interaction, like non-trivial sensors, is not included in the Interchange profile).

Each X 3D file must state at the beginning which profile it requiresto operate. For exam-
ple, in classic VRML encoding, the PROFI LE lineisrequired, like

PROFI LE I nt er change

Summing it up, the X3D author specifiesfirst the profile and then optionally any number
of components (and their levels) which must be supported (in addition to features already
requested by the profile). Effectively, X3D browsers can support any components at any
level, but they are aso strongly pushed to support some high profile. X3D authors can
request any profile and components combination they want, and are relatively safe to
expect support from most browsers for Interchange or even Interactive profiles.

New graphic features
Assaid, there are 34 X3D components, surely there are many new interesting nodes, far
too many to actually list them here. Y ou can take a quick look at the X3D specification
table of contents at this point.

OK, some of the more interesting additions (not present in VRML 97 amendment 1), in
my opinion: humanoid animation (H-Anim), programmable shaders, 3D texturing, cube
map environmental texturing, rigid body physics, particle systems.

X3D is supported in our engine since May 2008.

1.6.7. Events mechanism

One of the goals of VRML 97 was to allow creating animated and interactive 3D worlds.
Thisfeaturereally sets VRML above other 3D formats. We can define basic animations and
interactions in pure VRML language, while also easy and natural integration with scripting
languages is possible.

A couple of things make this working:

32

Overview of VRML

Events

Each node has a set of events defined by the VRML standard®. There are input events,
that can be send to the node (by routes and scripts, we will get to them soon). Input
event provides some value to the node and tells the node to do something. There are
also output events, that are conceptually generated “by the node”, when some situation
occurs. Every event has atype, just like a VRML field. This type says what values can
this event receive (input event) or send (output event). Specification says what events
are available, and what do they actually do.

For example, Vi ewpoi nt nodehasaninput set _bi nd event of SFBool type. When
you send a TRUE to this event, then the viewpoint becomesthe current viewpoint, making
camera jump to it. Thus, you can place many Vi ewpoi nt sin VRML file, and switch
user between them.

As an example of output event, thereisa Ti meSensor node that continuously sends
t i me output event (of SFTi e type). It sends current time value, in seconds (SFTi e
simply contains double-precision floating point value).

Exposed fields
The most natural use for events isto set a field's value (by input event), and to gener-
ate notification when field's value changed (by output event). For example, we have an
input event set _t ransl ati on for Tr ansf or mnode, and analogous t r ans| a-
ti on_changed event. Together with t r ansl at i on field, such triple is called an
exposed field.

A lot of fields are marked “exposed” in VRML standard. Analogous to above Tr ans-
form transl ati onexample, exposedfieldxxx isanormal field, plusaninput event
namedset _xxx that setsfield'svalue and generatesoutput event xxx_changed. This
allows events mechanism to change the VRML graph at run-time.

Some fields are not exposed (X3D calstheminitializeOnly), theideais that
VRML browser may need to do some time-consuming preparation to take thisfield into
account, and it's not very common to change this value once VRML file is loaded. For
example, cr easeAngl e of | ndexedFaceSet isnot an exposed field.

Routes
Thisisreally thekey idea, tying events mechanism together. A route connects one output
event to some other input event. This means that when source output event is generated,
the destination input event is fired. Destination event receives the value send by source
event, naturally.

For example, consider Pr oxi m t ySensor , that sends a couple of output events when
cameraiswithin some defined box. In particular, it sendsposi t i on_changed event
with current viewer position (as SFVec 3f value). Let's say wewant to makeaCyl i n-
der that hangs above camera, like areal cylinder hat. We can easily make a cylinder:

DEF MyCyl i nder Transform {
W do not want to define translation field here,

5some special nodes, like Scri pt and ConposedShader , may aso specify additiona fields and events in the form of so-
caled interface declarations. In this case, each instance of such node may have a different set of fields and events. Like said,
these are quite specia and serve a special purpose. For example, ConposedShader fields and events are passed to uniform
variables of GLSL (OpenGL shading language) shader.

These details are not really relevant for our simple overview of event mechanism... For simplicity you can just assume that all
nodes define their set of events, just like they define their fields.

33

Overview of VRML

#it will be set by route
children Transform {
This translation is to keep cylinder above the player
(ot herw se player woul d be inside the cylinder)
translation 0 2 O
chil dren Shape ({
geonetry Cylinder { }

}
}
}

How to make the cylinder move together with the player? We have to connect output
event of Pr oxi mi t ySensor withinput event of MyCyl i nder :

DEF MyProx Proxi mtySensor { }
ROUTE MyPr ox. posi ti on_changed TO M/Cyl i nder. set _transl ation

And that'sit! Asyou see, the crucial statement ROUTE connects two events (specifying
their names, qualified by node names). What is important is that routes are completely
independent from VRML file hierarchy, they can freely connect events between different
nodes, no matter where in VRML hierarchy they are. Many routes may lead to asingle
input event, many routes may come out from a single output event. Loops are trivialy
possible by routes (VRML standard specifies how to avoid them: only one event is per-
mitted to be send along one route during a single timestamp, this guarantees that any
loop will be broken).

Sensor nodes

Exposed events and routes alow to propagate events. But how can we generate some
initial event, to start processing? Sensor nodes answer this. We aready saw examples
of Ti meSensor and Pr oxi mi t ySensor . There are many others, allowing events
to be generated on object pick, mouse drag, key press, collisions etc. The idea is that
VRML browser does the hard work of detecting situations when given sensor should
be activated, and generates appropriate events from this sensor. Such events may be
connected through routesto other events, thus causing the whole VRML graph to change
because user e.g. clicked a mouse on some object.

The beauty of thisisthat we can do many interesting things without writing anything that
looks like an imperative programming language. We just declare nodes, connect their
events with routes, and VRML browser takes care of handling everything.

Interpolator nodes
These nodes alow to do animation by interpolation between a set of values. They al
have aset fracti on input field, and upon receiving it they generate output event
val ue_changed. How theinput fraction istrans ated to the output valueis controlled
by two fields: key specifies ranges of fraction values, and keyVal ue specifies corre-
sponding output values. For example, here's asimple animation of spheretraveling along
the square-shaped path:

#VRML V2.0 utf8
DEF Ti ner Ti meSensor { |loop TRUE cyclelnterval 5.0 }
DEF Interp Positionlnterpol ator {

key [O 0. 25 0.5 0.75 1]
keyValue [0 0 0 10 0 O 10 10 O 0100 00 0]

34

Overview of VRML

1.6.8.

}

DEF MySphere Transform {
chil dren Shape {
geonetry Sphere { }
appear ance Appearance { material Miterial { } }

}
}

ROUTE Ti mer. fracti on_changed TO Interp.set _fraction
ROUTE I nt erp. val ue_changed TO MySphere. set _transl ati on

Whole events mechanism isimplemented in our engine since August 2008.
Scripting

Scripting in VRML is very nicely defined on top of events and routes mechanism. The key
VRML node here isthe Scri pt node. It'sur | field specifies the script — it's either an
URL to the file containing actual script contents (MIME type or eventually file extension
will determine the script language), or an inline script (starting with specia protocol like
ecmascript: orcastl escript:).

Moreover, you can define additional fields and eventswithin Scri pt node. Scri pt node
isspecial inthisregard, since most of the normal VRML nodes have afixed set of fields and
events. Within Scr i pt , each nodeinstance may have different fieldsand events (some other
VRML nodes use similar syntax, like ConposedShader for uniform variables). These
“dynamic” fields/events are then treated as normal, is particular you can connect them with
other nodes fields/events, using normal VRML routes syntax. For example:

DEF MyScript Script {

Special fields/events for the script.
i nput Onl'y SFTi me touch_tinme
initializeOnly SFBool open FALSE
outputOnly SFTinme cl ose_tinme

out put Only SFTi me open_ti nme

Script contents --- in this case in CastleScript |anguage,
specified inline (script content is directly inside VRWML file).

url "castlescript:

function touch_tinme(val ue, tinestanp)

i f (open,
close tine := tinmestanp,
open_time := tinestanp);
open : = not (open)
}

ROUTE SoneTouchSensor.touchTi me TO MyScri pt.touch_tine
ROUTE MyScript.close tinme TO Ti neSensor _Cl oseAni mati on. start Ti ne
ROUTE MyScri pt. open_tinme TO Ti neSensor _CpenAni mati on. start Ti me

Theideaisthat you can declare fields within script nodes using standard VRML syntax, and
you route them to/from other nodes using standard VRML routes. The script contents say
only what to do when input event is received, and may generate output events. This way

35

Overview of VRML

1.6.9.

the script may be treated like a “black box” by VRML browser: browser doesn't have to
understand (parse, interpret etc.) the particular scripting language, and still it knows how this
script is connected to the rest of VRML scene.

VRML 97 specification includes detailed description of Java and ECMA Script (JavaScript)
bindings. X3D specification pushes this even further, by describing external language inter-
facein away that is“neutral” to actual programming language (which means that it should
be applicable to pretty much all existing programming languages).

My engine doesn't support ECMA Script or Java scripting for now. But we have two usable
script protocols:

1. conpi | ed: protocol allowsyou to assign acompiled-in (that is, written in ObjectPascal
and compiled in the program) handler to the script. See executing compiled-in code on
Script events [https.//castle-engine.io/x3d_extensions.php#section_ext script_compiled)]
documentation.

2. castl escript: protocol allows you to use a simple scripting language developed
specifically for our engine. It allows you to receive, process and generate VRML events,
being powerful enough for many scripting needs. Together with nodes like Key Sensor
thisalowsyou to write full games/toysin pure VRML/X3D (without the need to compile
anything). See https://castle-engine.io/castle_script.php for full documentation and many
examples.

Scripts are implemented in our engine since October 2008.

More features

Fun fact: this section of the documentation was initially called “ Beyond what is implement-
ed’. It was alist of various VRML 97 and X3D features not implemented yet in our en-
gine. But with time, they were all gradually implemented, and thelist of missing features got
shorter and shorter... So now we list in this section many features that are implemented, but
are documented elsewhere:

NURBS
NURBS curves and surfaces. Along with interpolators to move other stuff along curves
and surfaces. See NURBS [https://castle-engine.io/x3d_implementation_nurbs.php].

Environmental textures
Texturesto simulatemirrors, auto-generated or loaded from files. See cube map texturing
[https://castle-engine.io/x3d_implementation_cubemaptexturing.php].

Shaders
Full accessto GPU shaders (OpenGL Shading Language). See shaders [https://castle-en-
gine.io/x3d_implementation_shaders.php].

Clicking and dragging sensors
Sensors to detect clicking and dragging with a mouse. Dragging sensors are particularly
fun to allow user to visualy edit the 3D world. See pointing device sensor [https://cas-
tle-engine.io/x3d_implementation_pointingdevicesensor.php] .

And much more...
See X3D / VRML [https://castle-engine.io/vrml_x3d.php] for acomplete and up-to-date
list of all the X3D / VRML features supported in our engine. Including the standard X3D /
VRML features and our extensions.

36

https://castle-engine.io/x3d_extensions.php#section_ext_script_compiled
https://castle-engine.io/x3d_extensions.php#section_ext_script_compiled
https://castle-engine.io/x3d_extensions.php#section_ext_script_compiled
https://castle-engine.io/castle_script.php
https://castle-engine.io/x3d_implementation_nurbs.php
https://castle-engine.io/x3d_implementation_nurbs.php
https://castle-engine.io/x3d_implementation_cubemaptexturing.php
https://castle-engine.io/x3d_implementation_cubemaptexturing.php
https://castle-engine.io/x3d_implementation_shaders.php
https://castle-engine.io/x3d_implementation_shaders.php
https://castle-engine.io/x3d_implementation_shaders.php
https://castle-engine.io/x3d_implementation_pointingdevicesensor.php
https://castle-engine.io/x3d_implementation_pointingdevicesensor.php
https://castle-engine.io/x3d_implementation_pointingdevicesensor.php
https://castle-engine.io/vrml_x3d.php
https://castle-engine.io/vrml_x3d.php

Chapter 2. Scene Manager

The best way to use our engine is through the scene manager. Scene manager knows every-
thing about your 3D world, everything that is needed to perform collision detection, render-
ing and other useful operations. By default, scene manager is aso a viewport, that allows
you to actually see the 3D world.

2.1. Scene manager, and basic example
of using our engine

Figure 2.1. Three 3D objects arerendered here: precalculated dinosaur
animation, scripted (could beinteractive) fountain animation, and static
tower.

JErldemos LRSI 606 05 (Teal 27:20)]

In the simplest case, you just create TCast | eW ndow instance which gives you a ready-
to-use scene manager inside the TCast | eW ndow. SceneManager property.

Example code below uses scene manager to trivially make a full 3D model viewer. This
correctly handles collisions, renders in an optima manner (frustum culling etc.), handles
animations and interactive behavior and generally takes care of everything.

var
W ndow. TCast | eW ndow;
Scene: TCast | eScene;
begi n
Scene : = TCastl eScene. Creat e(Applicati on
{ Omer that will free the Scene });
Scene. Load(' nodel s/ boxes. x3dv') ;
Scene. Spatial := [ssRendering, ssDynam cCollisions];
Scene. ProcessEvents : = true;

W ndow : = TCast| eW ndow. Cr eat e(Appl i cati on);
W ndow. SceneManager . | t ens. Add(Scene) ;
W ndow. SceneManager . Mai nScene : = Scene;

W ndow. OpenAndRun;
end.

The source code of this program is in exanpl es/ 3d_renderi ng_process-
i ng/ vi ew_3d_nodel _basi c. | pr in engine sources. You can compile it and see

37

Scene Manager

that it actually works. There's also more extensive demo of scene manager in the ex-
anpl es/ 3d_renderi ng_processi ng/ scene_nmanager _denos. | pr,anddemo
of other engine stuff in exanpl es/ 3d_r enderi ng_pr ocessi ng/ vi ew_3d_nod-
el _advanced. | pr.

This looks nice and relatively straightforward, right? Y ou create 3D object (Scene), and a
window to display the 3D world (W ndow). It's obvious how to add a second 3D object: just
create Scene?2, and add it to W ndow. SceneManager . | t ens.

The Lazarus component equivalent to TCast | eW ndowiscalled TCast | eCont r ol . It
works the same, but you can drop it on a Lazarus form.

A 3D object is anything descending from a base class T3D. All 3D objects in our en-
gine are derived from the T3D class. The most important non-abstract 3D objects are
TCast | eScene (3D model, possibly interactive VRML / X3D) and TCast | ePr ecal -

cul at edAni mat i on (non-interactive animation). There are a'so some helper 3D objects
(T3DLi st - list of other 3D objects, and T3DTr ansl at ed - translated other 3D object).
And the real beauty isthat you can easily derive your own T3D descendants, just override a
couple methods and you get 3D objects that can be visible, can collide etc. in 3D world.

Any T3D descendant may be added to the scene manager | t ens. In every 3D program you
have an instance of scene manager (TCast | eSceneManager class, or your customized
descendant of it), and you add your 3D objectsto the scene manager. Scene manager keepsthe
whole knowledge about your 3D world, as atree of T3D objects. Scene manager should also
bepresent ontheCont r ol s list of thewindow, to receive all the necessary eventsfrom your
window, and passthemto all interested 3D objects. If youuse TCast | eW ndow, suggested
in the example above, then scene manager is aready created and added to the Cont r ol s
list for you. Scene manager also connects your camera, and defines your viewport where 3D
world is rendered through this camera.

2.2. Manage your own scene manager

For more advanced uses, you may use TCast | eCust omW ndow, which doesn't create
scene manager automatically for you. Instead, you have to create and manage scene manager
instance yourself. You create yourself an instance of TCast | eSceneManager (or any
descendant of this class), and you add it to TCast | eCust omWW ndow. Cont r ol s. This
is dightly more complex, but also alows more flexibility:

* You can implement and use your own descendant of TCast | eSceneManager , over-
riding some methods, and thus making some special rendering tricks.

» Sometimes, you don't want your scene manager to be present on controls all the time. For
example, if you create new scene manager for every level of your game, you probably want
to manually remove/add chosen scene manager instance from/to TCast | eCust onW n-
dow. Control s.

Example using this approach:

var
W ndow. TCast| eW ndowCust om
SceneManager: TCast| eSceneManager ;
Scene: TCast | eScene;

begi n
Scene : = TCast!l eScene. Creat e(Application

38

Scene Manager

{ Ower that will free the Scene });
Scene. Load(' my_scene. x3d");
Scene. Spati al := [ssRendering, ssDynam cCollisions];
Scene. ProcessEvents : = true;

SceneManager := TCastl| eSceneManager. Creat e(Application);
SceneManager. | t ens. Add(Scene) ;
SceneManager . Mai nScene : = Scene;

W ndow : = TCast| eW ndowCust om Cr eat e(Appl i cati on);
W ndow. Cont r ol s. Add(SceneManager) ;
W ndow. | ni t AndRun;

end.

This till looks relatively straightforward, right? Y ou create 3D abject (Scene), you create
3D world (SceneManager), and awindow to display the 3D world (W ndow). TheLazarus
component equivalent to TCast | eW ndowCust omis called TCast | eCont r ol Cus-
tom

2.3. 2D controls manager

A related topic is the 2D controls management. This is quite similar to the scene manager
approach, except that now it's for 2D and some details are different.

Everything that has to receive window events must derive from TUI Cont r ol class.
For example TCast | eOnScr eenMenu, and TCast | eBut t on are all descendants of
TUI Cont r ol . Even the TCast | eSceneManager is TUl Cont r ol descendant, since
scene manager by default acts as a viewport (2D rectangle) through which you can see your
3D world.

To actualy use the TUl Cont r ol , you add it to the window's Cont r ol s list. If you
use Lazarus component, then you'reinterestedin TCast | eCont r ol Cust om Control s
list. If you use our own window library, you're interested in the TCast | eW ndowCus-
t om Cont r ol s. Once control is added to the controlslist, it will automatically receive al
interesting events from our window.

2.4. Custom viewports

A viewport isjust a 2D rectangular control that provides aview of 3D world. As said previ-
ously, scene manager by default acts as aviewport. But you can a so have additional, custom
viewports, offering simultaneous different views of the same 3D world. Thisis done by the
TCast | eVi ewport class.

Y ou can have many viewports on the 2D window to observe your 3D world from various
cameras. You can make e.g. split-screen games (each view displays different player), 3D
modeling programs (where you usually like to see the scene from various angles at once), or
just show aview from some special world place (like a security camera).

Y our viewports may be placed in any way you like on the screen, they can even be overlap-
ping (one viewport partially obscures another). Each viewport hasit's own dimensions, own
camera, but they can share the same 3D world (the same scene manager). Each viewport has
also it's own rendering methods, so you can derive e.g. a specialized viewport that always
shows wireframe view of the 3D world.

39

Scene Manager

The scene manager itself also acts as a viewport, if Def aul t Vi ewport istrue. Thisis
comfortable for simple programs where one viewport is enough. When Def aul t Vi ew
port isfase, scene manager is merely acontainer for your 3D world, referenced by custom
viewports (TCast | eVi ewport classes).

See the example in engine sources exanpl es/ 3d_r enderi ng_pr ocessi ng/ mul -
tiple_vieworts. | pr for demo of using custom viewports.

Figure 2.2. Simple scene, viewed from various viewports simultaneously.

Open 3D file

Wireframe view Shadow volumes On

Figure 2.3. Interactive scene, with shadows and mirors, viewed from
variousviewports.

Wireframe view Shadow volumes On

Chapter 3. Reading, writing,
processing VRML scene graph

Thisand thefollowing chapterswill describe how our VRML engineworks. Wewill describe
used data structures and algorithms. Together this should give you a good idea of what our
engineis capable of, where are it's strengths and weaknesses, and how it's all achieved.

In this document we should not go into details about some ObjectPascal-specific language
constructs or solutions — this would be too low-level stuff, uninteresting from a genera
point of view. If you're an ObjectPascal programmer and you want to actually use my en-
gine then you may find it helpful to study source code [https://castle-engine.io/sources.php]
(especialy example programs in exanpl es subdirectories) and units reference [https://
castle-engine.io/reference.php] while reading this document. If you only want to read this
document, everything that you need is some basic idea about object-oriented programming.

3.1. TVRMLNode class basics

The base class of our engineisthe TVRMLNode class, not surprisingly representingaVRML
node. Thisis an abstract class, for al specific VRML node types we have some descendant
of TVRMLNode defined. Naming convention for non-abstract node classesis like TNode-

Coor di nat e classfor VRML Coor di nat e node type.

Every VRML node has it's fields available in it's Fi el ds property. You can also access
individual fields by properties named like FdXxx, for example FdPoi nt is a property of
TNodeCoor di nat e classthat represents poi nt field of Coor di nat e node.

VRML 1.0 children nodes are accessed by Chi | dr en and Chi | dr enCount properties.
For VRML 2.0 thisis not needed, since you access al children nodes by accessing appropri-
ate SFNode and MFNode fields. A convenience properties named Srmar t Chi | dr en and
Smar t Chi | dr enCount aredefined: for “normal” VRML 2.0 grouping nodes (thismostly
means nodes with MFNode field named chi | dr en) the Smar t Chi | dr enXxx properties
operate on appropriate MFNode, for other nodesthey operateon VRML 1.0 Chi | dr enXxx
properties.

Because of DEF / USE mechanism each node may be a children (“children” both in the
VRML 1.0 and 2.0 senses) of morethan one node. This meansthat we cannot use sometrivial
destructing strategy. When we destruct some node's instance, we cannot simply destruct all
it's children, because they are possibly used in other nodes. The simple solution to thisis
to keep track in each node about it's parents. Each node has properties Par ent Nodes and
Par ent NodesCount that track information about all the nodes that use it in VRML 1.0
style (i.e. on TVRMLNode. Chi | dr en list). And properties Par ent Fi el ds and Par -

ent Fi el dsCount that track information about all the SFNode and MFNode fields ref-
erencing this node. The children node is automatically destroyed when it has no parents —
which means that both Par ent NodesCount and Par ent Fi el dsCount are zero. Ef-
fectively, we implemented reference-counting. And as abonus, Par ent Xxx properties are
sometimes helpful when we want to do some “bottom-to-top” processing of VRML graph
(although this should be generally avoided, “top-to-bottom” processing is much morein the
spirit of the VRML graph).

Classes for VRML nodes specific to particular VRML version get a suffix _1 or _2 repre-
senting their intended VRML version. For example, wehave TNodel ndexedFaceSet _1

41

https://castle-engine.io/sources.php
https://castle-engine.io/sources.php
https://castle-engine.io/reference.php
https://castle-engine.io/reference.php
https://castle-engine.io/reference.php

Reading, writing, process-
ing VRML scene graph

(for VRML 1.0) and TNodel ndexedFaceSet _2 (for VRML 2.0) classes. Such nodesal-
ways have their For VRMLVer si on method overridden to indicate in what VRML version
they are allowed to be used. For example, when parser starts reading | ndexedFaceSet
node, it createseither TNodel ndexedFaceSet 1 or TNodel ndexedFaceSet 2, de-
pending on VRML version indicated in the file header line. Note that this separation between
VRML versionsisdone only when reading VRML nodesfrom file. When processing VRML
nodes graph by code you can freely mix VRML nodes from various VRML versions and ev-
erything will work, including writing nodes back to VRML file (although if you mix VRML
versionstoo carelessly you may get VRML filethat can only be read back by my engine, and
not by other engines that may be limited to only VRML 1.0 or only VRML 2.0). More on
thislater in Section 3.2, “The sum of VRML 1.0 and 2.0".

Theresult of parsing any VRML fileisalwaysasingle TVRM_Node instance representing
the root node of the given file. If the file had more than one root node 1 then our engine
wraps them in an additional G- oup node. More precisely, additional instance of TVRM.-
Root Node is created. It descends from TNodeGr oup_2 (but is suitable for all VRML/
X3D versions). This way it can always be treated as 100% normal Gr oup nodes. At the
sametime, VRML writing code can take special precautionsto not record these “fake” group
nodes back to VRML file.

3.2. The sum of VRML 1.0 and 2.0

Our engine handlesboth VRML 1.0 and VRML 2.0. Aswe have seen in Chapter 1, Overview
of VRML, there are important differences between these VRML versions. Theway how | de-
cided to handle both VRML versionsisthe more difficult, but a so more complete approach.
Effectively, you have the sum of VRML 1.0 and 2.0 features available.

| decided to avoid trying to create some internal conversions from VRML 1.0 to VRML
2.0, or VRML 2.0 to 1.0, or to some newly invented internal format. | wanted to have a
full, flexible, 100% conforming to VRML 1.0 and VRML 2.0 specifications engine. And
the fact is that any conversion along the way will likely cause problems — ideologically
speaking, that's because there is always something lost, or at |east difficult to recover, when
a complicated conversion is done.

Practically here are some reasons why a simple conversion between VRML 1.0 and VRML
2.0isnot possible, in any direction:

1. VRML 2.0 specification authorsintentionally wanted to simplify some things that people
(both VRML world authorsand VRML browser implementors) thought were unnecessar-
ily complicatedin VRML 1.0. This causes problemsfor apotential converter fromVRML
1.0to 2.0, sinceit will have trouble to express some VRML 1.0 constructs. For example:

* InVRML 1.0you can specify multiple materialsfor asingle geometry node. In VRML
2.0 each geometry node uses at most one material. So apotential converter from VRML
1.0 to 2.0 may need to split geometry nodes.

e In VRML 1.0 you can accumulate texture transformations (Text ur e2Tr ansf or m
nodes). In VRML 2.0 you can't (you can only place one Text ur eTr ansf or mnode
inthe Appear ance. t ext ur eTr ansf or mfield). So apotential converter must ac-
cumul ate texture transformations on it's own. And thisis not trivial in a general case,

IMultiple root nodes are allowed in VRML 2.0 specification. Our engine also allows them for VRML 1.0 becauseit'san extension
often expected by VRML 1.0 creators (humans and programs).

42

Reading, writing, process-
ing VRML scene graph

because you can't directly specify texture transformation matrix in VRML 2.0. Instead
you haveto express texture transformation in terms of one trandation, one rotation and
one scaling.

* InVRML 1.0 you can specify any 4x4 matrix transformation using Mat r i xTr ans-
f or mat i on node. Thisis not possible at all in VRML 2.0. In VRML 2.0 geometry
transformation must be specified in terms of trangdlations, rotations and scaling.

* In VRML 1.0 you can limit which geometry nodes are affected by Poi nt Li ght or
Spot Li ght by placing light nodes at particular points in the node hierarchy. That's
because in VRML 1.0 light nodes work just like other “state changing” nodes: they
affect all subsequent nodes, until blocked by the end of the Separ at or node.

In VRML 2.0thisdoesn't work. Y ou cannot control what parts of the scene are affected
by light nodes by placing light nodes at some particular place in the node hierarchy.
Instead, you have to use r adi us field of light nodes. This means that some VRML
1.0 tricks are simply not possible.

* Ot hographi cCaner aisnot possible to express using VRML 2.0 standard nodes.

Summary: in certain casestranslating VRML 1.0 to 2.0 can be very hard or even impossi-
ble. If wewant to handle VRML 1.0 perfectly, we can't just write aconverter fromVRML
1.0 to 2.0 and then define every operation only in terms of VRML 2.0.

2. Ontheother hand, VRML 2.0 aso includes various things not presentin VRML 1.0. This
includes many new nodes, that often cannot be expressed at al in VRML 1.0: all sensors,
scripts, interpolators, specia thingslike Col 1'i si on andBi | | boar d.

Moreover, VRML 2.0 uses SFNode (with possible NULL value) and MFNode, and gen-
erally reduces the state that needs to be remembered when processing VRML graph. This
means that many existing features have to be expressed differently.

For example consider specifying normals for | ndexedFaceSet . In VRML 2.0 every-
thing that decides about how generated normals are supplied arethe nor mal and nor -
mal | ndex fieldsof given| ndexedFaceSet node. Wetake advantage of the SFNode
field type, and say that whole Nor mal node may be just placed within nor mal field
of | ndexedFaceSet . So we just keep whole knowledge inside | ndexedFaceSet
node.

Ontheother hand, in VRML 1.0 we haveto usethe valueof last Nor mal Bi ndi ng node.
This says whether we should use the last Nor mal node, and how.

Potential VRML 2.0 to 1.0 converter would have to make alot of effort to “deconstruct”
VRML 2.0 shape properties back to VRML 1.0 state nodes. This makes conversion diffi-
cult to revert (e.g. when we want to write VRML 2.0 content back to file).

That's why | decided to support in my engine the sum of all VRML features. For example,
VRML 1.0 nodes can have direct children nodes, so | support it (by Chi | dr en property
of TVRMLNode). VRML 2.0 nodes can have children nodes through SFNode and MFNode
fields, so | support it too. I'm not trying hard to “combine” these two ideas (direct children
nodes and children inside M-Node) into one — | just implement and handle them both 2

2Smar t Chi | dr enXxx properties mentioned in the previous section somewhat combine VRML 1.0 and 2.0 ideas of children
nodes, but they are generally not used except in some small pieces of code where they just make the code shorter.

43

Reading, writing, process-
ing VRML scene graph

In some cases this approach forces me to do more work. For example, for many routines that
calculate bounding boxes of geometry nodes, | had to prepare three routines:

1. Common implementation, as a static procedure inside the X3DNodes unit. This handles
actual calculation and as parameters expects aready cal culated properties of given shape.
As a simple example, when calculating bounding box of a cube, we expect to get three
parameters describing cube'ssizesin X, Y and Z dimension.

2. VRML 1.0 implementation in VRML 1.0-specific node version that calls the common
implementation, after preparing parameters for common implementation. Asasimple ex-
ample, TNodeCube_1 (VRML 1.0 cube) just usesit's FdW dt h, FdHei ght and Fd-
Dept h as appropriate sizes.

3. And VRML 2.0 implementation in VRML 2.0-specific node version, that also calls the
common implementation after preparing it's parameters. As a simple example, TNode-
Box (VRML 2.0 cube) accesses three items of it's FdSi ze field to get the appropriate
Sizes.

In our simple example above we talked about a cube, and the whole issue with calculating
three size values differently for VRML 1.0 and 2.0 was actually trivial. But the point is that
for some nodes, like | ndexedFaceSet , thisis much harder.

For VRML authors this“sum” approach means that when reading VRML 1.0, many VRML
2.0 constructs (that not conflict with anything in VRML 1.0) are allowed, and the other way
around too. That's why you can actually mix VRML 1.0 and 2.0 code in my engine.

Update in 2022: AsVRML 1.0 format is now ancient and maintaining it has been some work,
this"sum" feature has been a little "downgraded". It is still possible to use many VRML 2.0/
X3D nodesin VRML 1.0, but not the other way around. That is, you can no longer use VRML
1.0 nodesin files declared as VRML 2.0/ X3D.

This also means that you have many VRML 2.0 features availablein VRML 1.0. VRML 2.0
nodes like Backgr ound, Fog and many others, that express features not available at all in
standard VRML 1.0, may be freely placed inside VRML 1.0 models when using our engine.

Also including (using WA nl i ne or | nl i ne nodes) VRML 1.0 files within VRML 2.0
files (and the other way around) is possible. Each VRML file will be parsed taking into
account it's own header line, and then included content is actually placed as a children node
of including WA nl i ne or I nl i ne node. So you get VRML graph hierarchy with nodes
mixed from both VRML versions.

3.3. Reading VRML files

Y ou can create anode using Cr eat ePar se constructor to parse the node. Or you can ini-
tialize node contents by parsing it using Par se method. However, these both approaches
require you to first prepare appropriate TX3DLexer instance and alist of read node names.

There are comfortable routines like Par se VRMLFi | e that take care of this for you. They
create appropriate lexer, and may create also suitable TSt r eaminstance to read given file
content.

Some detail s about parsing:

* Our VRML/X3D lexer isaunified lexer for both VRML 1.0, 2.0 and (classic) X3D. Most
of the syntax isidentical, minor differences can be handled correctly by alexer because it
alwaysknowsVRML/X3D header lineof thegivenfile. Soit knowswhat syntax to expect.

44

Reading, writing, process-
ing VRML scene graph

* VRML/X3D version of theoriginal fileissavedin TVRMLRoot Node. For ceVer si on.
This will be used later when saving. Parser always returns TVRMLRoot Node instance,
this keeps some per-file settings like version and X 3D profile, components and meta val-
ues.

When saving, you can save any TVRMLNode instanceto file. If it isnot TVRMLRoot N-
ode, or if TVRMLRoot Node. HasFor ceVer si on is false, we simply assume it uses
the latest X3D version.

In engine versions <= 2.5.0 we experimented with auto-detecting the suitable VRML/
X3D version for nodes inside, but this mechanism was dropped. It was complicated, and
wasfailing anyway for complicated cases (nodes from mixed versions, things with routes,
imports, exportsetc.). If you want to save aspecific VRML/X3D version, it'sbest to simply
wrap it inside TVRM_Root Node and force desired version explicitly. Modern programs
should target only X3D anyway, asVRML 1.0 isancient, and VRML 2.0 isold too (from
1997).

* While parsing, For VRMLVer si on method mentioned earlier may be used to decide
which node classes to create based on VRML/X3D version indicated in the file's header
line.

» To properly handle DEF / USE mechanism we keep a list of known node names while
parsing. After a node with DEF clause is parsed we add the node name and it's reference
to NodeNaneBi ndi ng list that is passed through all parse routines. When a USE clause
is encountered, we just search thislist for appropriate node name.

Simple VRML rules of DEF / USE behavior make this approach correct. Remember that
VRML name scope is not modeled after normal programming languages, where name
scope of an identifier is usually limited to the structure (function, class, etc.) where this
identifier isdeclared. In VRML, name scope always spans to the end of whole VRML file
(or to the next DEF occurrence with the same name, that overrides previous name). Also,
the name scopeis always limited to the current file— for example, you cannot use names
defined in other VRML files (that you included by I nl i ne nodes, or that include you).
(Prototypes and external prototypesin VRML 2.0 are designed to allow reusing VRML
code between different VRML files.)

The simple trick with adding our name to NodeNamneBi ndi ng after the node is fully
parsed prevents creating loopsin our graph, in case supplied VRML fileisinvalid.

3.4. Writing VRML files

SaveToSt r eammethod of TVRMLNode classallowsyou to save node contents (including
children nodes) to any stream. Just like for reading, there are al so more comfortable routines
for writing called SaveToVRM_Fi | e.

3.4.1. DEF / USE mechanism when writing

When writing we also keep track of all node names defined to make use of DEF / USE
mechanism. If we want to write a named node, we first check NodeNaneBi ndi ng list
whether the same name with the same node was already written to file. If yes, then we can
place a USE statement, otherwise we haveto actually write the node's contents and add given
node to NodeNameBi ndi ng list.

45

Reading, writing, process-
ing VRML scene graph

The advantages of above NodeNaneBi ndi ng approach is that it always works correctly.
Even for node graphs created by code (as opposed to node graphs read earlier from VRML
file). If node graph was obtained by reading VRML file, then the DEF / USE statements will
be correctly written back to the file, so there will not be any unnecessary size bloat. But note
that in some cases if you created your node graph by code then some node contents may be
output more than oncein thefile:

1. First of all, that's because we can use DEF / USE mechanism only for nodes that are
named. For unnamed nodes, we will have to write them in expanded form every time.
Even if they were nicely shared in node graph.

2. Second of al, VRML name scope is weak and if you use the same node name twice,
then you may force our writing algorithm to write node in expanded form more than once
(becauseyou “overridden” node name between thefirst DEF clause and the potential place
for corresponding USE clause).

So if you process VRML nodes graph by code and you want to maximize the chances that
DEF / USE mechanism will be used while writing as much asit can, then you should always
name your nodes, and name them uniquely.

It's not hard to design a general approach that will always automatically make your names
unique. VRML 97 annotated specification suggests adding to the node name an _ (under-
score) character followed by some integer for this purpose. For example, in our engine you
can enumerate all nodes (use Enurrer at eNode method), and for each node that is used
more than once (you can check it easily: such node will have Par ent NodesCount +
Par ent Fi el dsCount > 1)youcanappend' ' + Ptr Ul nt(Pointer(Node))
to the node name. The only problem with this approach (and the reason why it's not done
automatically) isthat you will have to strip these suffixes later, if you will read thisfile back
(assuming that you want to get the same node names). This can be easily done (just remove
everything following the last underscore in the names of multiply instantiated nodes). But
then if you load the created VRML file into some other VRML browser, you may see these
internal suffixes anyway. That's why my decision was that by default such behavior is not
done. So the generated VRML file will always have exactly the same node names as you
specified.

3.4.2. VRML graph preserving

Aswas mentioned a couple of times earlier, we do everything to get the VRML scene graph
in memory in exactly the same form as was recorded in VRML file, and when writing the
resulting VRML file also directly corresponds (including DEF / USE mechanism and node
names) to VRML graph in memory.

Actually, there are two exceptions:
1. I nl i ne nodesload their referenced content as their children

2. When reading VRML file with multiple root nodes, we wrap them in additional G- oup
node

. but we work around these two exceptions when writing VRML files. This means that
readl ng the scene graph from file and then writing it back produces the file with the exact
same VRML content. But whitespaces (including comments) are removed, when writing we
reformat everything to look nice. So you can simply read and then write back VRML fileto
get asmple VRML pretty-printer.

46

Reading, writing, process-
ing VRML scene graph

3.5. Constructing and processing VRML
graph by code

Thisfeature was mentioned a coupl e of times before. In code, you can simply instantiate any
nodes you want, you can add them as a children of other nodes, you can set their fields as
you like, and so on. Also several methods for enumerating and searching the nodes graph are
provided (like Enuner at eNodes and Fi ndNode). See units reference [https://castle-en-
gine.io/reference.php] for details.

| made adecent converter from 3DS, Wavefront OBJand other file formatsto X3D thisway.
Once | was able to read thesefiles, it wastrivial to construct according VRML/X3D graphs
for them. You can then save constructed VRML/X3D graph to afile (so user can actualy
use this converter) and you can further process and render them just like any other VRML
nodes graph (so my engine seamlessly handles 3DS and Wavefront files too, even though
it'samost solely oriented on VRML).

This also allows authors to include 3DS, Wavefront OBJ and other filesinside VRML/X3D
filesby | nl i ne nodes, making it possible to create scenes in mixed 3D formats.

3.6. Traversing VRML graph

Traversing VRML graph means visiting all active VRML graph nodes in adepth-first search
order. By “active” nodes we mean that only the visible (or affecting the visible) parts of the
graph are browsed — for example, only one child of aSwi t ch and LOD nodes is visited.

You can traverse nodes using Tr aver se or Tr aver seFr onDef aul t St at e methods.
For each visited node, a callback function will be called.

The most important feature of traversing is that whole VRML state that we talked about in
Section 1.5, “VRML 1.0 state” is collected along the way. For each visited node traverse
callback gets all the information about accumulated transformation, active light nodes and
(meaningful only for VRML 1.0 nodes) currently bound property nodes (material, texture
etc.).

3.7. Geometry nodes features

3.7.1.

An important descendant of TVRMLNode is the TVRMLGeonet r yNode class. Thisisan
abstract class. All visible VRML nodes (in VRML 1.0 and 2.0) are descendants of this class.

TVRMLGeonet r yNode class defines a couple of important methods, overridden in each
descendant. All of these methods take a St at e parameter that describes VRML state at
given point of the graph (thisistypically obtained by atraverse callback), since we need this
to have full knowledge about node's geometry.

Bounding boxes

Local Boundi ngBox and Boundi ngBox methods calculate axis-aligned bounding box
of given node.

Axis-aligned bounding box is one of the simplest bounding volume types. It's a cuboid with
axesaligned to base coordinate system X, Y and Z axes. It can be easily expressed asapair of

47

https://castle-engine.io/reference.php
https://castle-engine.io/reference.php
https://castle-engine.io/reference.php

Reading, writing, process-
ing VRML scene graph

3D points. In our engine we require that the points coordinates are correctly ordered, i.e. X
position of thefirst point must alwaysbeless or equal than the X position of the second point,
and analogoudly for Y and Z values. We aso have the special value for designating empty
bounding box. And while we're talking about empty bounding boxes, remember to not con-
fuse empty box with abox with zero volume: abox with zero volume still has some position.
For example, aPoi nt Set VRML node with only one point has a non-empty bounding box
with azero volume. A Poi nt Set without any points has empty bounding box.

I chose axis-aligned bounding boxesjust because they are very simpleto calculate and oper-
ate on. They have some disadvantages — as with all bounding volumes, there is some com-
promise between how accurately they describe bounding volumes and how comfortableitis
to operate on them. But in practice they just work fast and are enough accurate.

Local Boundi ngBox method returnsabounding box of given object without transforming
it (i.e. assuming that St at e contains an identity transformation). Boundi ngBox method
takes current transformation into account. Each descendant has to override at least one of
these methods. If you override only Local Boundi ngBox then Boundi ngBox will be
calculated by transforming Local Boundi ngBox (which can give poor bounding volume,
much larger than necessary). If you override only Boundi hgBox thenLocal Boundi ng-

Box will be calculated by calling Boundi ngBox with transformation matrix set to identity
matrix (this can make Local Boundi ngBox implementation much slower than a potential
specia Local Boundi ngBox implementation that knows that there is no transformation,
S0 no matrix multiplications have to be done).

3.7.2. Triangulating

VerticesCount and Tri angl esCount calculatetriangles and vertices count of given
geometry.

Local Tri angul at e and Tri angul at e methods are available in the TShape class.
They calculate al the triangles of given geometry. Use TShape. Geonet r yAr r ays if
you want the full information about every shape (including indexes, colors, and all the other
information required for efficient rendering).

If you want to control how detailed the triangulation should be:

» Programmers can use Def aul t Tri angul ati onSl i ces, Def aul t Tri angul a-
tionStacks andDef aul t Tri angul ati onDi vi si ons global variables.

* VRML / X3D authors can use the Geometry3D component - extensions: custom triangula-
tion fields [https://castle-engine.io/x3d_implementation_geometry3d_extensions.php] in
node to control this.

* Finaly, my programs view3dscene [https://castle-engine.io/view3dscene.php] and ray-
hunter [https://castle-engine.io/rayhunter.php] allow you to control this by command-line
options

--detail -quadric-slices <integer>
--detail -quadric-stacks <integer>
--detail -rect-divisions <integer>

3.8. WWWBasePath property

Thisisastring property that specifies base URL of each node. Actualy, for now our engine
doesn't support downloading data using any network protocol, so thisis aways treated just

48

https://castle-engine.io/x3d_implementation_geometry3d_extensions.php
https://castle-engine.io/x3d_implementation_geometry3d_extensions.php
https://castle-engine.io/x3d_implementation_geometry3d_extensions.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/rayhunter.php

Reading, writing, process-
ing VRML scene graph

like an absolute path on local file-system. It isalways set to the directory of VRML filefrom
which given node was read. It's used by nodes that reference any externa file, likel nl i ne
or | mageText ur e. Thanksto thisfield, all such nodes can awaysresolvetheirur | fields
with respect to the directory of their file.

For example, assume that inside some directory you haveamain VRML filemai n. wr | and
two subdirectories: t ext ur es andi nl i ne. Insidet ext ur es you haveafileny_t ex-
ture. pngandinsidei nl i ne you have VRML filet ext ur ed_box. wr | . Finaly, let's
say that you want to include textured box in mai n. wr | file, so you write

Inline { url "inline/textured_box.wl" }
Now insidet ext ur ed_box. wr | you should reference the texture like
| mmgeTexture { url "../textures/texture.png" }

and everything will work when you open mai n. wl| VRML file. Moreover, tex-
tured_box. wr| isableto “stand on it's own” too, which means that you can open only
t ext ur ed_box. wr| and texture will still be properly read.

This is similar to xml:base [http://www.w3.0rg/TR/xmlbase/] attribute in XML, that was
needed to makeincluding XML filesby XInclude and referencing external filesfrom various
elements (like DocBook'si magedat a) to cooperate seamlessly.

3.9. Defining your own VRML nodes

At the end it'sworth noting that you're not limited to the nodes defined by VRML specifica-
tions and implemented in X3DNodes unit. You can freely define your own TVRM_Node
descendants. All it takesto make them visibleisto register them in NodesManager object.
For example, call

NodesManager . Regi st er NodeCl asses([TNodeM]) ;

from your unit'sinitialization section. You may also want to add it to the Al | owedChi | -
dr enNodes list.

Thisway you can define specific VRML nodes for a specific programs, without the need to
modify anything within the base units. | used thistechniquein the malfunction game [https.//
castle-engine.io/malfunction.php] to define special-purpose VRML nodes like Mal f unc-
tionLevel I nfoandMal f unct i onNot Movi ngEneny.

3.10. VRML scene

If you want to operate on the VRML graph, for some purposesit's enough to load your scene
toa TVRM_.Node instance. Thisway you know the root node of the scene. Each node points
(withinit's Chi | dr en property and SFNode and M=Node fields) toit's children nodes, so
if you know the root node of the scene, you know the whole scene. TVRMLNode class gives
you many methods to operate on the nodes graph, and sometimes thisis all you need.

However, some operations cannot be implemented in TVRM_Node class. The basic reason
is that the node doesn't “know” the state of VRML graph where it is used. Node's state is
affected by other nodes that may be it's parents or siblings. Moreover, a node may be used
many times in the same scene (by DEF / USE mechanism), so it may occur many timesin

49

http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/
https://castle-engine.io/malfunction.php
https://castle-engine.io/malfunction.php
https://castle-engine.io/malfunction.php

Reading, writing, process-
ing VRML scene graph

a scene with different states. That's why many TVRM_LNode methods (like Tr i angul at e
and Boundi ngBox methods described in Section 3.7, “Geometry nodes features’) require
aparameter St at e: they are not able to figure it out automatically.

These are the reasonswhy an additional class, called TCast | eSceneCor e, wascreated. It
isessentially just awrapper around aVRML root node (kept insideit's Root Node property)
adding a lot of useful and comfortable methods to operate and investigate the scene as a
whole.

3.10.1. VRML shape

First, let'sintroduce a building block for our scene class. a shape. Instance of TShape class.
Shape is basically two pieces of information: a geometry node (TVRMLGeonet r yNode)
andit'sstate (TX3DGr aphTr aver seSt at e). For VRML >= 2.0, thisusually corresponds
to asingle instance of actual VRML Shape node, that's the reason for it's name.

Shape contains absolutely al the information needed to render and generally deal with this
piece of VRML graph. It's completely independent from other shapes.

For VRML 2.0, some shape features were already available. That's because of smart defini-
tions of chi | dr en fields of grouping nodes, as explained earlier in Section 1.5.1, “Why
VRML 2.0 is better”: we don't need so much state information in VRML 2.0 and we can
pick children of grouping nodes in any order. Still, our shape provides the more complete
solution: it includes also accumulated transformation matrix and “global” properties (fog and
active lights).

3.10.2. Simple tree of shapes

This is the main property of TCast | eSceneCor e. Theideais simple: to overcome the
problemswith VRML state, wecanjust use Tr aver se method from the root node (see Sec-
tion 3.6, “ Traversing VRML graph”) and store every geometry node (descendant of TVRML -
Geonet r yNode, see Section 3.7, “Geometry nodes features’) along with it's state. As a
result we get asimple list of shapes. This list is, to some extent, an alternative “flattened”
representation of the VRML graph.

Actually, we can't really have a completely flat list of shapes. Instead, we create a simple,
usually quite flat tree of shapes, in TCast | eSceneCor e. Shapes. Reason: somethings,
like Swi t ch node, require some processing each time we want to browse the tree (thisway,
we keep track of shapesininactive Sw t ch children, which allowsusvery fast switching of
Swi t ch. whi chChoi ce, that is; replacing/adding/removing large parts of VRML graph).

So we take VRML nodes graph, and transform it into another graph (shapes tree)... But the
resulting treeisreally much simpler, it'sjust as simple representation of VRML visiblethings
asyou can get.

This way we solve various problems mentioned in Section 1.5, “VRML 1.0 state”: we get
full accumulated VRML state readily available for each shape. Also, given atree of shapes,
we can pick our shapesin any order, and we can pick any of them. Thisis crucial for various
OpenGL rendering features and optimizations.

Additional advantage of looking at our shapestreeisthat resources completely not used (for
example Text ur e2 node not used by any node in VRML 1.0) are not present there. They
don't occur in astate of any shape. So unused textureswill not be even loaded from their files.

50

Reading, writing, process-
ing VRML scene graph

Finally, remember that in Section 1.5, “VRML 1.0 state” we mentioned a practical problem
of smpleVRML 1.0 implementation in OpenGL: OpenGL stack sizesarelimited. Our scene
solvesthis, becausethereisno unlimited push/pop hierarchy anymore. Features of nodeslike
VRML 1.0 Separ at or and Tr ansf or nSepar at or are aready handled at this stage.
And they are handled without using any OpenGL stacks, since this unit can't even depend
on OpenGL. Features of VRML 2.0 Tr ansf or mnodes that apply transformation to all it's
children are already handled here too.

3.10.3. Events

TCast | eSceneCor e is responsible for implementing most of the events mechanism of
VRML / X3D. Just set Pr ocessEvent s property to true.

Some underlying parts of events mechanism are in fact implemented at the lower level, that
isinside TVRM_Node class and friends. For example, event routes are instantiated when
reading VRML file and they become attached to VRML graph. So passing events through
routesis already working at this point. Also, exposed events are implemented directly inside
TX3DFi el d. So setting an exposed field by event | n causes appropriate behavior (chang-
ing field's value and generating proper event Qut).

However, without TCast | eSceneCor e. ProcessEvent s, al theseroutesand exposed
events are useless, since nothing initially “fires’ the event. Routes and exposed events are
mechanisms to process events, but they cannot generate events “on their own”, that is they
generate events only when other events push themto it. The way to make an “initial event” in
VRML / X3D isto use sensor nodes. V arious sensor nodes emit events at specified situations,
for example

» Ti meSensor fires events continuously when time changes,
* KeySensor firesevents when user presses a key within VRML browser,

» TouchSensor and othersfrom “pointing device sensor component” in X3D fire events
when user clicks/ drags with mouse,

* ProximtySensor and Tr ansf or nSensor fire events on collision (of viewer or
normal objects within VRML world) with user-defined boxes in space, thus allowing col-
lision detection to VRML authors.

By setting TCastl eSceneCore. ProcessEvents to true (and updating
TCast | eSceneCore. Wr | dTi e, TCast | eSceneCor e. Key Down and others) you
make sensors work. Thus initial events are generated when appropriate, and routes and ex-
posed events take care of spreading them, changing VRML graph as necessary.

3.10.4. Various comfortable routines

Numerous other features are available in our scene class:

» Methodsto cal cul ate bounding box, vertexes count and triangles count of the whole scene.
They work simply by summing appropriate results of all shapes.

» Methodsto calculatetriangleslist (triangulate all shapesin the scene) and to build octrees
for the scene. There are also comfortable properties to store the build octree associated
with given scene — although our engine doesn't limit how you manage the constructed

51

Reading, writing, process-
ing VRML scene graph

octrees, you can create as many octrees for given scene as you want and store them where
you want.

More about octrees in Chapter 4, Octrees.

* Methodsto find Vi ewpoi nt or cameranodes, transform them, and cal culate simple (po-
sition, direction, up) triple describing camera setting.

» Methodsto find Fog node and calculate it's transformation.

3.10.5. Caching

Some scene properties are quite time-consuming to calculate. Calculating the tree of shapes
requires traversing whole scene graph. Calculating scene bounding box is even more dif-
ficult, since for each shape we must calculate it's bounding box (in fact calculation of
scene bounding box as implemented simply uses the shapes tree). Obviously we cannot re-
peat these calculations each time we need these values. So the results are cached inside
TCast | eSceneCor e instance.

Most of the properties are cached: shapes, bounding boxes, vertexes and triangles counts,
fog properties. Even triangles' lists may be cached if you want.

Also various properties for single shapes are cached inside TShape instance: bounding box,
bounding sphere and triangle and vertexes counts. After al, some of these operations are
guite time-consuming by themselves. For example to cal culate bounding box of | ndexed-
FaceSet we haveto iterate over al it's coordinates.

Direct changes to actual VRML nodes are not automatically detected. In
other words cache is not automaticaly cleared on changes. Instead you
have to manualy cal TCastl eSceneCore. ChangedField (or eventualy
TCast | eSceneCor e. ChangedAl |) after changing some parts of the scene. Scene an-
alyzes how this change affects the rendered scene, and invalidates as few as possible parts
of the cache.

For example changes to VRML 1.0 nodes like Text ur e2 or Mat eri al will affect only
the shapes that have these nodes in their state. So the whole shapes tree doesn't need to be
regenerated, also the information about other shapes (like their bounding boxes) is till valid.

For simple scene changes, you can also use TX3DFi el d. Send methods. Thiswill change
the value of the field, and automatically notify all interested scenes. Y ou can also just send
eventsinstead of directly modifying fields, see the next section.

In Section 6.4, “VRML scene class for OpenGL” we will introduce the TCast | eScene
class that descends from TCast | eSceneCor e. It adds various OpenGL methods and
cachesvarious OpenGL resourcesrelated to rendering particular scene parts. This meansthat
our ChangedFi el d method will have even greater impact.

3.10.6. Events and ChangedField notifications

At the low level, passing events works by TX3DEvent . Send method and TX3DEven-
t . OnRecei ve calbacks. Both input and output events can be send and received: for input
events, it's the outside world (routes, scripts) that sends the event, and handling of the event
is specific to containing node. For output events, it'sthe other way around: sending the event
is specific to containing node, and the event is received by connected routes.

52

Reading, writing, process-
ing VRML scene graph

When exposed fields are changed through events, TCast | eSceneCor e takes care to au-
tomatically internally call appropriate ChangedFi el d methods. This means that events
mechanism automatically updates everything as necessary, and you don't have to worry
about it — the VRML world inside TCast | eSceneCor e will just magically change by
itself, assuming TCast | eSceneCor e. ProcessEvent s is on. This also means that
ChangedFi el d methods implement the “cherry-picking optimizations” when VRML
graph is changed: they know about what changed, and they know how it affects the rest of
the VRML graph, and so they decide what needs to be recal culated. For example, when Co-

or di nat e node changed through event, we know that only geometry using this coordinate
node has changed, so only it'sresources need to be recomputed. Therearealot of possibilities
to optimize here by using knowledge about what specific node does, what it possibly affects
etc. VRML 2.0 things are easier and probably more optimized in thisregard — reasons were
givenin Section 1.5, “VRML 1.0 state” and Section 1.5.1, “Why VRML 2.0 is better”.

So we have three methods of changing the field value. Do it directly, like

Fi el d. Val ue : = 666;
Scene. ChangedFi el d(Fi el d) ;

or do it by sending event, like
Fi el d. Event | n. Send(666) ;

or use the simplest TX3DFi el d. Send method, that sends an event (or directly changes
value, if events processing is turned off), like

Fi el d. Send(666) ;

Thiswill trigger all event callbacks, so the field value will change, and everyone interested
will be notified about this: output event of exposed field will be generated and sent along the
routes, and TCast | eSceneCor e will be notified about the change.

53

Chapter 4. Octrees

Octree is a tree structure used to partition a 3D space. Each octree node has eight children
(hence the name “octree”, oct + tree). Our engine uses octrees for a couple of tasks.

4.1. Collision detection

Generally speaking, octree is useful for various collision detection tasks:

1. First of al, for a“normal” collision detection needed in games. That is for checking col-
lisions between the player and the world geometry. The player may be represented by a
sphere, and when the player moves we check that:

» Theline segment between the current player position and the new player position does
not collide with the world.

*» The sphere surrounding new player position does not collide with the world.

When we detect a collision, we can simply reject player move, or (much better) propose
another, non-colliding new player position. Thisway the player can “ slide” along the wall
when he triesto moveinto it.

Thisisdone within MoveCol | i si on method of the TTr i angl eCct r ee class.

Also, when gravity works, we want the player to preserve some preferred height above
the ground. This allows the player to climb up and down the hills, stairs etc. It is often
called terrain-following. Thisreguires cal culating current player height above the ground.
By comparing this height with a preferred height we know whether the player position
should fall down or raise up. Thisis done by checking for a collision between aray (that
starts at player's position and is directed down) with the world.

Thisisdone by Hei ght Col | i si on method of TTri angl eCct r ee class.

2. For ray-tracer, this is the most important data structure. Ray-tracer checks collisions of
rays with the world to calculate it's image. Also when calculating shadows we check for
collision between light point (or arandom point on light's surface, in case of surfacelights)
and the possibly shadowed geometry paint.

This is done by RayCol | i si on and Segnent Col | i si on methods of TTri an-
gl eCctr ee class.

3. When player picks (for example by clicking with mouse) given point on the screen show-
ing 3D scene, we want to know which object from our 3D scene (for example, which
VRML node) he actually picked. So again we want to do collision detection between aray
(starting at player's position and with direction cal culated from player's looking direction,
screen dimensions and picked point coordinates on the screen) and the world.

Note that there are other methods to determine which object player picked. For example
you could employ some OpenGL tricks: rendering in selection mode, or reading color
buffer contents to get results of depth buffer tests. See The OpenGL Programming Guide
- The Redbook [http://www.opengl.org/documentation/red_book/] for details. But once
we have octree already implemented, it is usually easier and less cumbersometo use than
these tricks.

http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/
http://www.opengl.org/documentation/red_book/

Octrees

4. When rendering using OpenGL, we don't want to pass to OpenGL objects that are known
to be invisible to the player. For example, we know that objects outside of the camera
frustum are invisible. In certain cases (when e.g. dense fog is used) we also know that
objects further from player than certain distance are not visible.

Thismeansthat we want to check for collision between camerafrustum and/or spherewith
the world. This is done by Enuner at eCol | i di ngCctreel t ens and Spher eC-
ol I i si on methods.

More information about how these algorithms are used will be given in Section 6.4,
“VRML scene class for OpenGL".

4.2. How octree works

Octree is a tree where each internal (non-leaf) node has eight children. Each node spans a
particular space area, expressed as an axis-aligned bounding box (available as Box property
of TCct r eeNode). Each node also has a chosen middle point inside this box (available as
M ddl ePoi nt property of TOct r eeNode class). This point defines three planes paral-
lel to the base X, Y and Z planes and crossing this point. Each child of given octree node
represents one of the eight space parts that are created by dividing parent space using these
three planes.

Each child, in turn, may be either

1. Another internal node. So it has his own middlie point and another eight children. His
middle point must be within the space part that his parent node gave him.

2. Or aleaf, that simply contains actual items that you wanted to storein an octree. What is
an “actual item” depends on with want items you want to calculate collisions using this
octree.

In our engine we have two octree types:
a TTriangl eCct r ee that keepstriangles

b. TShapeCct r ee that keeps VRML shapes. Shapeisapair of TVRMLGeonet r yN-
ode (remember from Section 3.7, “Geometry nodes features’ that these are the only
VRML nodesthat actually have some geometry visible) andit's St at e (obtained from
traversing VRML graph).

What happens when given item should be included in more than one children? That is, item
is contained in space part of more than one children?

1. Simple solutionisto put thisitem inside all children where it should be. This means that
we could waste a lot of memory if given item should be present in many leaf nodes, but
this problem can be somewhat cured by just keeping an array of octreeitemsfor thewhole
octree (like TTri angl eCctree. Tri angl es or TShapeCQct r ee. ShapesLi st)
and keeping only indexestothisarray in octreeleafs(l t ensl ndi ces property of TCc-
t r eeNode).

2. Another possible solution is to keep such problematic item only in the list of items of
internal node, instead of putting it inside children nodes. But each octree node has eight
children, and given item can be contained for example only in two of eight children. In

55

Octrees

this case our collision checking routines would aways have to consider this item, while

in fact they should consider it only for a2/8 part of the space.

That's why my engine doesn't use this approach. Note that some hybrid approach could
be possible here, for example keep the item if it spans more than 4 children nodes and put
it inside children otherwise. This idearemains to be implemented one day... For now our
collision checking isfast enough for all purposes when it's needed in real-time games.

Example below shows an octree constructed by our engine. The sample scene contains two
boxes and a sphere. On the screenshot yellow bounding boxes indicate every internal node
and every non-empty leaf. Whol e sceneis contained within root node of thetree, sothelargest
yellow bounding box corresponds also to the bounding box of the scene. The “lonely” box
(in the foreground) is placed within the two direct children on the root tree node. Left and
right quarter on theimage contain only empty children leaves of root node, so their bounding
boxes are not shown. Finally, the interesting things happen in the quarter with a box and
a sphere. Sphere has many triangles, so a detailed octree is constructed around it. Also the

sphere caused a little more detailed octree around the near box.

#VRML V2.0 utf8

Vi ewpoi nt {

position -10.642 8.193 -5.614

orientation -0.195 -0.921 -0.336 2.158

}

Transform {
translation 4 0 1.25
chil dren Shape {

appear ance DEF ALit Appearance { nateri al

geonetry Sphere { }

}
}

Transform {
translation 4 0 4
chil dren Shape {
appear ance USE ALit
geonetry Box { }

}
}

Transform {
translation -4 0 -4
chil dren Shape {
appear ance USE ALit
geonetry Box { }

}
}

Mat eri al

{1}

56

Octrees

Figure 4.1. A sample octree constructed for a scene with two boxes and
a sphere

Y ou canview octreelikethisusing view3dscene[https://castle-engine.io/view3dscene.php].
Just turn onthe menu option“View” ->“ Show whole octree”. There are al so menu commands
to investigate octree nodes only at the particular depth.

4.2.1. Checking for collisions using the octree

Let's assume that you have some reference object (like a sphere or aray or aline segment
mentioned in the first section) that you want to check for collisions with all items contained
inthe octree. Y ou start from the root node— all items, which means*“all potential colliders’,
are there. You check with which children of this node your object could possibly collide.
Different object types will require various approaches here. In general, this comes down to
checking for collision between children nodes boxes and your reference object. For example:

1. For a sphere, you check which child node contains the sphere center. Then you check
with which planes (of the three dividing planes of this node) the sphere collides. This
determines all the children that the sphere can collide with.

Above approach isnot asaccurate asit could be— sinceit effectively checksthe collision
of the bounding box of the sphere with children boxes. To make it more accurate you can
check whether the middle point of given node is within the sphere. But it's not certain
whether this additional check will make your collision detection faster (because we will
descend into less children nodes) or slower (because we spend time on the additional
check). In practice, this depends on how large spheres you will check for collision —
for small (small in comparison to the world) spheres, this additional check will seldom
eliminate any child and probably will be worthless.

2. For aray: determine child node where ray start is. Then check for collision between this
ray and three base planes crossing node's middle point. This will let you determine into
which children nodestheray enters. Similar approach could be taken for the line segment.

3. For afrustum: first note that our engine stores frustum as a 6 plane equations.

The basic approach here is to employ the method of checking for collision between a
plane and abox. To determine collision of abox with aplane you can check 8 box corners

57

https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php

Octrees

on which side of the plane they are (ssmply by checking expression similar to the plane
equation, Ax + Bx+ Cz+ D >= 0). If al points are on the same side of the plane (and no
point lies precisely on the plane) then there is no collision. This also tells your on which
size of the plane the box is located, in case there is no collision.

In our engine, frustum planes are correctly oriented, so the answer to the question “on
which size of the plane” a box is located is meaningful to us. To check for collision of
frustum with anode, we check 6 frustum planesfor collision with thisnode's box. If box is
on theinside side of every plane, this means that the box is completely inside the frustum.
Otherwise, if thebox ison the outside side of at |east one plane, then the box is compl etely
outside of the frustum. Otherwise (which means that box collides with at least one plane,
and it's not outside any plane) we don't really know.

Inthelast case, we're pretty certain that the box collides somehow with the frustum, so we
assumethis. In case of error, nothing terrible will happen: our collision checking routine
using octree will just work alittle slower than possible, but it will still be 100% correct.
In practice, in almost all cases our assumption will be true, although some nasty cases are
indeed possible. Y ou can see an example of such case below. Thisisaside view showing
afrustum and abox. Y ou can see that the box collides with 3 planes and is considered to
be on the inside of the 4th plane (the one at the bottom). Y ou can easily extend thisimage
to 3D and imagine the remaining 2 frustum planes in such way that they will intersect
the box.

Figure4.2. A nasty case when a box is considered to be colliding with
afrustum, but in fact it's outside of the frustum

Colliding object

Thick lines

outline the frustum Thin lines represent the

frustum planes,
which are just frustum
border segments

streched into infinity

Onceyou can check with which octree node's children your object collides, you just apply this
processrecursively. That is, for each internal node you determine which of it's children may
collide with your reference object, and recursively check for collisionsinside these children.
For each leaf node, you just sequentially check al it's items for collision. For example, in
case of atriangle octree, in the leafs you will check for collision between triangles and your
reference object.

What's the time of this collision checking algorithm? Like with all tree structures, the idea
is that the time should be logarithmic. But actually we don't use any advanced techniques
that could ensure that our octree isreally balanced. And the fact that itemsthat are put inside
more than one children are effectively multiplied in the octree doesn't help either. However
octrees of real-world models are enough balanced (and multiplication is small enough) to
make collision checking using octrees “logarithmic (i.e. fast) in practice’.

58

Octrees

Some more notes about collision checking using an octree:

» Sometimes al you need is the information that “some collision occurred” (for example
that's enough for shadow detection). Sometimes you want to get the closest collision point
(for example, closest to the ray start, for ray-tracing). The first case can obviously be op-
timized to finish whole algorithm as soon as any collision isfound. In the second case you
must always check all itemswhen you process aleaf node (becausetheitemsin leaf nodes
are not ordered in any way). But when processing internal nodes it can still be optimized
to not enter some children nodesif collision in earlier child node was found (in cases when
we know that every possible collision in one child node must be closer to ray start than
every possible collision in other node).

» Aswasmentioned earlier, if an octree item fitsinto more than one child of given node, we
put it inside every matching children node, thus duplicating information about thisitem in
many leafs. But this means that we can lose some speed. We can be fooled into checking
more than once for collision between our reference object (like aray) with the same item,
but placed within a different leaf.

Thisisnot so terribly bad, since we are talking here about tests like checking for collision
between a single ray and a single triangle. So this test is anyway quite fast operation, in
constant time. But still it requires acouple of floating point operations, and it's called very
often by our algorithm, so we want to optimize it.

The solution is caled the mailboxes. Each octree item gets a mailbox. Each reference
object (like aray) gets a unique tag. Before we check for collision between our reference
object and an octree item, we check whether the mailbox has the information about the
collision test result for this object tag. If yes, then we obtain the collision test result from
the mailbox. Otherwise, we perform normal (more time-consuming) test and we store the
test result along with the object tag within the mailbox. Thisway each item will be tested
for collision with reference object only once. Next time we will just use the mailbox.

This is possible to implement thanks to the fact that we keep indexes to items in octree
nodes, and the actual items are kept in an array for a whole octree. So we can naturally
place our mailboxesin this array.

4.2.2. Constructing octree

A simplealgorithm startswith an empty tree, containing oneleaf nodewith noitems. Thenwe
add our items (triangles, VRML shapesetc.) to the octree keeping an assertion that no leaf can
have more than some specified number of items (Leaf Capaci ty property of TOctr ee
class). When we see that adding another item to some leaf would break this assertion, we
convert theleaf to aninternal node with eight children, and we add items (previous leaf items
and the new item that we're trying to add) to newly created children. Of course, each children
gets only the items that are within its space part.

Note that this algorithm doesn't guaranteein any way that atreeisbalanced. And we want the
tree to be balanced, otherwise checking for collisions using thistree will be as slow (or even
slower) than just sequentially checking collision with all items. However, for most real-world
models, the items are spread more-or-less evenly across the scene, so in practice our treeis
more-or-less balanced. To prevent the pathological casesthat could result in extremely deep
octrees we can add a simple limit on the allowed depth of the tree (MaxDept h property of
TCct r ee class). When a leaf reaches Max Dept h, we will not split it to an internal node
anymore, no matter how many items does it contain. So the assertion becomes “leafs on

59

Octrees

depth < MaxDept h must have at most Leaf Capaci t y items’. This way the nasty cases
are somewhat bounded — our collision checking using tree cannot be much slower than just
sequentially checking for collision with all contained items.

Thereisaquestion how to cal culate middle point of each node. The simple and most common
approach isjust to calculate it as an actual middle point of the node's box. Root tree node
getsabox equal to the bounding box of our scene. But you could plug here other techniques.
The basic ideais that the tree should be balanced, so ideally the middle point should divide
the node's box into eight parts with equal number of trianglesinside.

For some purposesit's helpful to keep in each internal nodealist of al items contained within
it's children. This eats more memory, but may allow in some cases to terminate the collision
checking operation faster. For example, when we want to check which octreeitemsareinside
acamerafrustum, we often find ourselvesin asituation when we know that some octree node
iscompletely contained within the frustum. If we have all theitems indexes easily accessible
within thisinternal node, we can avoid having to traverse all children nodes under this node.
Thisisused by TShapeQct r ee in our engine.

4.3. Octrees for dynamic worlds

Inversion 1.6.0 of the engine, the octree structures were much improved to make them suit-
able for dynamic scenes. The crucial ideaisto use a 2-level hierarchy of octrees (instead of
asingle octree).

1. Each shape has it's own triangle octree, build and stored in local shape coordinates
(TShape. Cct reeTri angl es). Since everything inside this octree is stored in local
coordinates, nothing has to be updated when merely the transformation of this shape
changes (it's moved, rotated and such). When the local geometry changes, the octree till
has to be rebuild — but now it's only the octree for this particular shape, octrees of other
shapes don't change.

2. Theresalso asingle octree of al scene shapes. Shapes are stored there in world coordi-
nates. Each change of geometry causesthe rebuild of thisoctree, but thisisasmall octree,
so rebuilding it isusually very fast.

When making a collision query, for example when testing whether a ray (given in world
coordinates) intersects the scene, we start with anormal collision in the shape octree. At the
leaves, we have alist of shapes potentially intersecting thisray. To test ray with each shape,
we transform the ray into shape's local coordinates (this means we need to keep an inverted
matrix of shape transformation, to convert from world space into local space). Then the ray
in local coordinates is checked for collisions with triangle octree inside the shape. After the
testing, we need to transform the returned intersection (if found) back into world coordinates.

| dare to say that this works pretty excellent. Traversing the shape octree must be done effi-
ciently, just like traversing triangles octree — in fact, we smply have TBaseTr i angl e-
sCct r ee class that implements the non-leaf traversing algorithms for both tree kinds. Tri-
angle/shape octrees only have to handle what happens in leaf octree nodes. Both octrees use
the mailbox technique to avoid checking the same item more than once during one collision
query. For triangle octree mailboxes save the number of direct triangle vs ray/segment tests.
For shape octree they save the number of shape vs ray/segment tests (so we will have less
queries to local shape octrees, which is quite important saving, this makes query time more
than 2 times faster on some scenes).

60

Octrees

4.3.1. Transforming between world and local co-
ordinates

As noted, we need to know the transformations and inverted transformations of the shapes,
to freely switch between world and local coordinate space. For normal transformations
(Transf or mnodein VRML >= 2.0) we simply calculate the inverted matrix along with the
normal matrix when traversing VRML/X3D graph, so when doing collision query we have
both matrices ready to use. For arbitrary 4x4 matrix transformations (Mat ri xTr ansf or m
node, standard in VRML 1.0, and added as an extension to VRML >= 2.0) we have to actu-
aly calculate matrix inversion. Careful reader will spot here potential problems:

» What if the matrix is not reversible? What if there's a scale with zero factor, for example
ascae(1, 1, 0) that projects shape onto Z=0 plane?

Wéll, then well have a problem... thisis simply not solved now, and as far as | know it
would just require special treatment (whichisquitedifficult, since there may be many such
difficult transforms along the traversing way).

* A minor problem is with arbitrary matrices, as they may change a point into a direction
or the other way around (as we work with homogeneous coordinates, each 3D point is
actually a4D vector with non-zero 4th component; each 3D direction isa4D vector with
4th component zero). This is simply detected and no collision assumed — we can't do
anything more sensible for these cases actually. That'swhy | really likethefact that VRML
>= 2.0 removed Mat ri XxTr ansf or mfrom the standard — forcing authors to express
transformations in terms of only Tr ansf or mnode is a Good |dea.

» Another problem iswhen we check for collisions with axis-aligned box or sphere. How to
transform an axis-aligned box or sphere by a matrix?

1. An axis-aligned box should turn into an oriented box by a mere rotation. If we aso
take into account scaling along the arbitrary axis, you get something that doesn't even
have to be a box. It's a 6-DOP, that is a set of 3 pairs of parallel planes. There are
known routinesto detect collisionswith such thing, but admittedly they are alittle more
involved and, what's more important, much slower than routines dealing with simple
axis-aligned box.

2. A sphere under an arbitrary transformation will turn into an ellipsoid. Ellipsoid is a
spherewith (possibly) non-uniform scale along an arbitrary 3D axis. To make collisions
with it you usually just un-rotate and un-scale the other object (like triangle) and then
make normal intersection with a sphere. Again, thisis doable, but is also slower (than
normal, untransformed, sphere routines).

So what's our solution? Just ignore the whole issue. Transform axis-aligned box into an-
other axis-aligned box, possibly enlarging it by the way. Convert sphereinto axis-aligned
box, and then transform thisinto possibly even larger axis-aligned box. Thisway weinput
an axis-aligned box into local sphere's octree. While this looks like a lame solution, it's
also simple and fast. Practice shows that it's “lameness’ is totally not noticeable on real
3D scenes. That's because boxes and spheres are used mainly as bounding volumes for
player and creatures. So the fact that they grow dightly larger during collision detection
is not noticeable in practice.

Still, implementing it better, at least using ellipsoidsis of course planned some day. It just
doesn't seem desperately needed now.

61

Octrees

4.3.2. The future — dynamic irregular octrees

The goal isto implement one day areally dynamic octree, to avoid rebuilding the shape oc-
tree at all. For details, see the paper Dynamic Irregular Octrees [http://www.cs.nmsu.edu/
CSWSitechRpt/2003-004.pdf] (from the page http://www.cs.nmsu.edu/CSWS/php/techRe-
ports.php?rpt_year=2003) by Joshua Shagam and Joseph J. Pfeiffer. A short summary of the
idea

» First of all, updating the octree can be done simply by deleting and re-inserting the octree
item.

» During delete and insertion you should try to keep the octree balanced, so leafsmay be split
or merged to keep octree limits (maxDept h, | eaf Capaci ty in our implementation)
satisfied. Inserting is of course already implemented (that's how we construct the octree),
the delete operation must be done.

» To make the deletion possible in areasonable time, you have to keep each item only once
in the octree. This means that some items will not be placed at octree leaves, instead they
will be “stuck” at the lowest possible internal node.

Notethat thiswill also makethe “mailbox” idea useless, asthe only function of “mailbox”
isto save the computation when items are duplicated many timesin the octree.

» The fact that some items get “stuck” at internal nodes is generally a bad thing. We want
to move items as deep as possible, to gain from octree traversing. Otherwise the whole
idea of octree becomes useless.

To counter this, we make the octree node planes optional. Since a plane may be “ deacti-
vated”, someitems may be allowed to go deeper into the octree.

4.4. Similar data structures

There are other tree structures similar to the octree. Generally, octree is the easiest one to
construct. Other tree structures give greater flexibility how the space is partitioned on each
level, but to actually get the significant speed benefit, these trees must be also constructed
in much smarter way.

* kd-tree partitions space at each node by a plane parallel to one of the base planes. In other
words, it uses one plane where octree uses three planes. This alows greater flexibility, for
example it may be more optimal to divide the space more often by a X = const plane than
Y = const. Octreeisforced to divide space by all three planes at each node.

If you will use the simple “rotational” strategy (X, Y, Z, then again X, Y, Z and so on) to
choose partitioning axes at each depth, then the kd-tree becomes similar to an octree.

The name kd-tree comes from “k-dimensional tree” term, since kd-tree may be used for
any number of dimensions, not necessarily 3D.

» BSP (Binary Space Partitioning) tree partitions space in each node by a plane. Any plane,
not necessarily parallel to one of the base X, Y, Z planes.

This gives even more flexibility than kd-tree, but it makes constructing optimal BSP trees
much harder (assuming that you want to actually produce a better tree than what can be

62

http://www.cs.nmsu.edu/CSWS/techRpt/2003-004.pdf
http://www.cs.nmsu.edu/CSWS/techRpt/2003-004.pdf
http://www.cs.nmsu.edu/CSWS/techRpt/2003-004.pdf
http://www.cs.nmsu.edu/CSWS/php/techReports.php?rpt_year=2003
http://www.cs.nmsu.edu/CSWS/php/techReports.php?rpt_year=2003

Octrees

achieved with kd-tree). It also means that at each node you have to check for collision
between your reference object and an arbitrary plane (instead of a plane parallel to one of
the base coordinate system planes), so computations get alittle slower than for kd-tree.

Note that BSP tree is suitable for any number of dimensions, just like kd-tree. Y ou just
use different equations to represent hyperplanesin other dimensions.

Finally, note that the only thing that ties octree to 3 dimensions is actually it's name. The
same approach could be used for any number of dimensions. For N dimensions, each in-
ternal node will have 2\ children. For example for 2 dimensions each node has 4 children,
and such tree is called a quadtree.

Note that this approach is inadequate when we have areally large number of dimensions,
because then 2" will be so large that “organizational” data of all tree nodes may eat alot
of memory. But it is not a problem if we stay within reasonable number of dimensions,
like 2 or 3.

63

Chapter 5. Ray-tracer rendering

This chapter describes our implementation of ray-tracer, along with some related topics.

We don't even try to explain here how ray-tracing algorithms work, as this is beyond the
scope of this document. Moreover, the ray-tracer is not the most important part of our engine
right now (OpenGL real-timerendering is). Thismeansthat while our ray-tracer hasacouple
of nice and unique features, admittedly it also lacks some common and important ray-tracer
features, and it certainly doesn't even try to compete with many other professional open-
source ray-tracing engines existing.

Many practical details related to using our ray-tracer are mentioned in rayhunter documen-
tation [https://castle-engine.io/rayhunter.php]. Many sample images generated by this ray-
tracer are available in the rayhunter gallery [https://castle-engine.io/raytr_gallery.php].

5.1. Using octree

The basic data structure for ray-tracing is an octree based on triangles, that is TTr i an-
gl eCct r ee instance. If you want to ray-trace a scene, you have to first build such octree
and pass it to a procedure that does actual ray-tracing. Note that the quality of the octree is
critical to the speed of the ray-tracer. Fast ray-tracer requires much deeper octree, with less
itemsin leafs (Leaf Capaci t y property) than what is usualy sufficient for example for
collision detection in real-time game.

To caculate triangles for your octree you should usethe Tr i angul at e method of VRML
geometry nodes. Triangles enumerated by this method should be inserted into the octree.
If you use TCast | eSceneCor e classto load VRML models (described in Section 3.10,
“VRML scene”) you haveacomfortablemethod Cr eat eTr i angl eCct r ee availablethat
takes care of it al, returning the ready octree for awhole scene.

The Tri angul at i on method is also admittedly responsible for some lacks in our ray-
tracer. For example, ray-tracer doesn't handl e textures, because triangul ation callback doesn't
return texture coordinates. Also normal vectors are not interpolated because triangulation
callback doesn't return normal vectors at the triangle corners. Thisisal intended to be fixed
one day, but for now ray-tracer is not that important for our engine.

5.2. Classic deterministic ray-tracer

Classic Whitted-style deterministic ray-tracer is done by TC assi cRayTr acer classin
RayTr acer unit.

Point and directional lights are used, asdefined by all normal VRML light nodes. Thismeans
that only hard shadows are available. Algorithm sends one primary ray for each image pixel.
Ray-tracing isrecursive, wheretheray arrives on some surface we check raysto light sources
and eventually we recursively check refracted ray (when Mat eri al hast r anspar ency
> 0) and reflected ray (when Mat eri al hasni rror >0).

The resulting pixel color is calculated according to VRML 97 lighting equa
tions [http://www.web3d.org/x3d/specifications/vrml/I SO-1EC-14772-VRML97/part1/con-
cepts.ntml#4.14]. Thisis probably the most important advantage of ray-tracer in our engine:
ability to calculate images conforming precisely to the VRML 97 lighting specification. Ac-
tually, we modified these equations a little, but only because:

64

https://castle-engine.io/rayhunter.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/raytr_gallery.php
https://castle-engine.io/raytr_gallery.php
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14

Ray-tracer rendering

1. | have recursive ray-tracing while VRML 97 specifies only local light model, without a
placeholder for reflected and refracted color.

2. VRML 1.0 Spot Li ght must be caculated differently, since it uses the dr opOr -
f Rat e field (a cosinus exponent) to specify spot highlight. While VRML 2.0 uses the
beam dt h field (a constant spot intensity area and then a linear drop to the spot bor-
der). Sofor VRML 1.0 spot lights we use the equations anal ogous to the OpenGL lighting
equations.

3. The ambient factor is calculated taking into account that standard VRML 1.0 light nodes
don't havetheanbi ent | nt ensi t y field. Although, asan extension, our engineallows
you to specify anmbi ent | nt ensi ty toget VRML 2.0 behavior in VRML 1.0 [https://
castle-engine.io/x3d_extensions.php#ext_light_attenuation].

5.3. Path-tracer

Doneby TPat hTr acer classinRayTr acer unit.

Surface lights are used: every shape with non-zero emni ssi veCol or isconsidered alight
emitter. For each image pixel many random paths are checked and final pixel color is the
average color gathered from al paths.

Path length is determined by a given minimal path length and a Russian-roul ette parameter.
Every path will have at least the specified minimal length, and then Russian-roulette will
be used to terminate the path. E.g. if you set minimal path length to 3 and Russian-roulette
parameter to 0.5 then 1/2 of all paths will have length 3, 1/4 of all paths will have length 4,
1/8 of all paths will have length 5 etc.

Russian-roulette makes sure that the result is unbiased, i.e. the expected value is the correct
result (the perfect beautiful realistic image). However, Russian-roulette introduces also a
large variance, visible as anoise on theimage. That's why forcing some minimal path length
helps. Sensible values for minimal path length are around 1 or 2. Of course, the more the
better, but it will also slow down the rendering. Y ou can set minimal length to O, then Rus-
sian-roulette will always be used to decide about path termination (expect a lot of noise on
theimage!).

Actually our path-tracer does something morethan anormal path-tracer should: for every pix-
el it checksPri mar ySanpl esCount of primary rays, and then each primary ray that hits
something splitsintoNonPr i mar y Sanpl esCount . Sointotal wecheck Pr i mar ySam
pl esCount * NonPri marySanpl esCount paths. This optimization comes from the
fact that thereisno need to take many Pr i mar y Sanpl esCount , becauseal primary rays
hit more-or-less the same thing, since they have very similar direction.

To get redly nice results path-tracer requires a different materials description. | added a
couple of additional fields to Mat eri al node to describe physical material properties
(for Phong's BRDF) [https://castle-engine.io/x3d_extensions.php#ext_material_phong_brd-
f_fields]. If these fields are not specified in Mat er i al node, path-tracer tries to calculate
them from normal material properties, although this may result in a poor-looking materials.
There's also a program kambi_mgf2inv [https://castle-engine.io/kambi_mgf2inv.php] avail-
ablethat let's you convert MGF filesto VRML 1.0 generating correct values for these addi-
tional Mat eri al fields.

Shadow cache is used, this makes path-tracer alittle faster. Also you can generate the image
pixels in more intelligent order than just line-by-line: you can use Hilbert or Peano space-

65

https://castle-engine.io/x3d_extensions.php#ext_light_attenuation
https://castle-engine.io/x3d_extensions.php#ext_light_attenuation
https://castle-engine.io/x3d_extensions.php#ext_light_attenuation
https://castle-engine.io/x3d_extensions.php#ext_light_attenuation
https://castle-engine.io/x3d_extensions.php#ext_material_phong_brdf_fields
https://castle-engine.io/x3d_extensions.php#ext_material_phong_brdf_fields
https://castle-engine.io/x3d_extensions.php#ext_material_phong_brdf_fields
https://castle-engine.io/x3d_extensions.php#ext_material_phong_brdf_fields
https://castle-engine.io/x3d_extensions.php#ext_material_phong_brdf_fields
https://castle-engine.io/kambi_mgf2inv.php
https://castle-engine.io/kambi_mgf2inv.php

Ray-tracer rendering

5.4.

filling curves. In combination with shadow cache this can make path-tracing faster (shad-
ow cache should hit more often). Although in practice space-filling curves don't make any
noticeable speed difference. Undoubtedly, there are many possibilities how to improve the
speed of our path-tracer, and maybe one day space-filling curves will cometo areal use.

RGBE format

Our ray-tracer can store images in the RGBE format.

RGBE stands for Red + Green + Blue + Exponent. It's an image format developed by Greg
Ward, and used e.g. by Radiance [http://floyd.Ibl.gov/radiance/]. Colors in RGBE images
are stored with a very good precision, while not wasting a lot of disk space. Good precision
means that you may be able to expose in the image some details that were not initially visible
for the human eye, e.g. by brightening some areas. Also color components are not clamped
to [0; 1] range — each component can be any large number. Thismeansthat even if resulting
image is too bright, and some areas look just like white stains, you can aways correct the
image by darkening it or applying gamma correction etc. This is especially important for
images generated by path-tracer.

Y ou can process RGBE images using various Radiance programs. Y ou can also use RGBE
images in all my programs, for example you can view them using glViewlmage [https.//
castle-engine.io/glviewimage.php] and you can use them as textures on VRML models.

5.5. Generating light maps

Thisisafeature closely related to ray-tracer routines, although it doesn't actually involve any
recursive ray-tracing. The idea comes from the realization that we aready have a meansto
calculate light contribution on a given point in a scene, including checking what lights are
blocked on this point. So we can use these methods to cal culate lighting on some surfacein-
dependent of the camera (player) position. All it takes is just to remove from lighting equa-
tions all components related to camera, which means just removing the specular component
of lighting equation. We can do it even for any point on a scene (not necessarily a point that
is actually part of any scene geometry), as long as we will provide material properties that
should be assumed by calculation.

What do we get by this? We get the ability to generate textures that contain accumulated
effect of al lights shining on given surface. Thisincludes shadows. We can use such texture
on a surface to get already precomputed lighting with shadows. Of course, the trick will
only work aslong as lights are static in the scene and it's not a problem to remove specular
component for given surface. And remember to make the texture large enough — otherwise
user will seethat the shadows on thewall are pixelated and the whol e nice effect will be gone.

| used this trick to generate ground texture for my toy lets take a walk [https://castle-en-
gine.io/lets_take a walk.php]. Initially | had this model:

66

http://floyd.lbl.gov/radiance/
http://floyd.lbl.gov/radiance/
https://castle-engine.io/glviewimage.php
https://castle-engine.io/glviewimage.php
https://castle-engine.io/glviewimage.php
https://castle-engine.io/lets_take_a_walk.php
https://castle-engine.io/lets_take_a_walk.php
https://castle-engine.io/lets_take_a_walk.php

Ray-tracer rendering

Figureb5.1. lets take a walk scene, side view

Using our trick | generated thistexture for the ground. Note how thetextureincludes shadows
of all scene abjects. And note how the upper-right part of the texture has anice brighter area.
Our OpenGL rendering above didn't show this brighter place, because the ground geometry
is poorly triangulated. So OpenGL rendering hit again the problems with Gouraud shading
discussed in detail earlier in Section 3.7.2, “Triangulating”. It's a quite large texture (1024
x 1024 pixels), but any decent OpenGL implementation should be able to handle it without
any problems. In case of problems, | would just split it to a couple of smaller pieces.

67

Ray-tracer rendering

Figure5.3. Generated ground texture

Finally, resulting model with a ground texture:

Figure5.4. lets take a walk scene, with ground texture. Side view

68

Ray-tracer rendering

Figureb.5. lets take a walk scene, with ground texture. Top view.

Such textures may be generated by the gen_I i ght _rmap program included in the cas-
t| e_ganme_engi ne/ exanpl es/vrm /tool s/ gen_light_map. | pr file in our
engine source code. The underlying unit responsible for all actual work is called VRM_-
Li ght Map. | et s_t ake_a_wal k source code is available too, so you can see there an
example how thegen_| i ght _map program may be called.

69

Chapter 6. OpenGL rendering

6.1. VRML lights rendering
6.1.1. Lighting model

When rendering using the OpenGL we try to get results as close as pos
sible to the VRML 2.0 lighting equations [http://www.web3d.org/x3d/specifica
tions/vrml/I SO-IEC-14772-VRML97/partl/concepts.html#4.14] and X3D lighting equa-
tions [http://www.web3d.org/x3d/specifications/| SO-1EC-19775-1.2-X 3D-Abstract Specifi-
cation/Part01/components/lighting.html#Lightingequations]. We set OpenGL lightsand ma-
terials properties to achieve the required look.

Notethat therearebitswhenitisnot possibleto exactly match VRML 2.0/ X 3D requirements
with fixed-function rendering:

1. VRML 2.0/ X3D specify the spot light falloff by abeamA dt h field. This cannot be
precisely trandated to a standard OpenGL spotlight exponent.

Let a be the angle between the spot light's direction and the ray from spot light's position
to the considered geometry point.
» OpenGL spot light uses cosinus drop-off, which means that the light intensity within

the spot cut Of f Angl e is calculated as a Cos(a)etExPonent,

* VRML 2.0/ X3D have abeanm dt h. When a < beamWidth, the light intensity is
constant (1.0). For larger angles, theintensity islinearly interpolated (down to 0.0) until
anglereachescut O f Angl e.

Thereisjust no sensibletranslationfrombeamA dt h ideato OpenGL spot Exponent .

An exception is the case when beamWidth >= cutOffAngle. Then spot has constant inten-
sity, which has be accurately expressed with GL_SPOT_EXPONENT = 0. Fortunately,
thisisthe default situation for all spot lights.

We have considered an extension to define Spot Li ght . dr opOf f Rat e as an exten-
sion for VRML >= 2.0 lights. With definition like “default value of dropOffRate = -1
meansto try to approximate beamWidth, otherwise dropOffRate is used as an exponent”.
But it didn't prove useful enough, especially since it would be our own extension.

Looking at how other VRML/X3D implementations handle this:

» Seemsthat most of them ignore the issue, leaving spot exponent always 0 and ignoring
beamWidth entirely.

* One implementation http://arteclab.artec.uni-bremen.de/courses/mixed-reality/materi-
al/ARToolkit/ARToolKit2.52vrml/lib/libvrml/libvrml97gl/src/vrml 971/
old_ViewerOpenGL.cpp checks beamWidth < cutOffAngle and sets spot_exponent to
0 or 1. Thisiswhat we were doing in engine versions <= 3.0.0.

* Xj3D (see src/javalorg/ web3d/vrm /renderer/ogl/nodes/Iight-
i ng/ OGLSpot Li ght . j ava) setsG._SPOT_EXPONENT to 0.5/ beamWidth.

70

http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.14
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/lighting.html#Lightingequations
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/lighting.html#Lightingequations
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/lighting.html#Lightingequations
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/lighting.html#Lightingequations
http://arteclab.artec.uni-bremen.de/courses/mixed-reality/material/ARToolkit/ARToolKit2.52vrml/lib/libvrml/libvrml97gl/src/vrml97gl/old_ViewerOpenGL.cpp
http://arteclab.artec.uni-bremen.de/courses/mixed-reality/material/ARToolkit/ARToolKit2.52vrml/lib/libvrml/libvrml97gl/src/vrml97gl/old_ViewerOpenGL.cpp
http://arteclab.artec.uni-bremen.de/courses/mixed-reality/material/ARToolkit/ARToolKit2.52vrml/lib/libvrml/libvrml97gl/src/vrml97gl/old_ViewerOpenGL.cpp

OpenGL rendering

It's not “more precise” in any way, the value 0.5 isjust a "rule of thumb" as far as we
know. But at least it allows to control exponent by beam dt h. Thisis an important
advantage, as you can at least change the drop off rate by changing the beamWidth.
Evenif beamWidth isnot interpreted following the specification, at least it'sinterpreted
somehow, and allows to achieve arange of different effects.

* FreeWRL (see http://search.cpan.org/src/LUKKA/FreeWRL-0.14/VRMLRend.pm,
freewl-1.22.13/src/lib/scenegraph/ Conponent Lighting.c in
later version) uses approach similar to Xj3D, setting GL_SPOT_EXPONENT to 0.5/
(beamWidth + 0.1).

For example, thisresultsin

* beamWidth=0=>GL_SPOT_EXPONENT =5

e beamWidth = Pi/4 => GL_SPOT_EXPONENT =~0.5/0.9=~1/2
* beamWidth = Pi/2 => GL_SPOT_EXPONENT =~0.5/1.67 =~ 1/3

It's similar to Xj3D, and the +0.1 seems to be just to prevent division by (something
close to) zero in case beamWidth is very very small. Unfortunately, this addition also
limits the possible values of GL_SPOT_EXPONENT: it'sat most 5 (0.5/0.1 = 5, as
beamWidth must be > 0), and sometimes larger values would be useful.

* Inour engine current version, we do it like this:
 |If beamWidth >= cutOffAngle, then GL_SPOT _EXPONENT isO.
» Otherwisewefollow Xj3D version: GL_ SPOT_ EXPONENT is0.5/ max(beamWidth,

epsilon)

If you want to convert VRML 1.0 dr opOf f Rat e to VRML 2.0/ X3D beam dt h

precisely:

* If dropOffRate = 0O, then leave beamWidth at default Pi/2. This makes beamWidth
>= cutOffAngle (because cutOff Angle must be <= Pi/2 according to spec), which
means no smooth falloff.

» Otherwise beamWidth := 0.5/ (128 * dropOffRate) = 1/ (256 * dropOffRate).

2. Theexponential fog of VRML 2.0 also uses different equations than OpenGL exponential
fog and cannot be matched perfectly. See VRML and OpenGL specifications for details.

3. Fixed-function renderer uses Gouraud shading, with it's limitations.

Shader pipeline overcomes above problems. We program spot falloff ourselves in GLSL,
honoring beamA dt h correctly. We also do per-pixel lighting calculation (Phong shading).
See lighting [https://castle-engine.io/x3d_implementation_lighting.php].

Y ou can also use classic ray-tracer of our engine to see the correct lighting.

6.1.2. Rendering lights

VRML/X3D lights are trandated to the appropriate OpenGL calls using the TGLRender -
er Li ght s class. Thisisused internally by the TALRender er discussed in next sections.
For now if you implement custom OpenGL rendering of 3D stuff, for haveto also implement
custom handling of OpenGL lights. (This is scheduled to be improved in engine 2.6.0, by
making an instance of TGLRender er Li ght s more widely available.)

When you render 3D models using our engine classes, like TCast | eScene, every-
thing related to lights is automatically taken care of. All lights (including the head-

71

http://search.cpan.org/src/LUKKA/FreeWRL-0.14/VRMLRend.pm
https://castle-engine.io/x3d_implementation_lighting.php
https://castle-engine.io/x3d_implementation_lighting.php

OpenGL rendering

light, see https://castle-engine.io/x3d_extensions.php#section_ext_headlight) can be de-
scribed and animated inside the VRML/X3D model. Programmers can aso control
lights by code. Some useful things are TCast | eSceneCor e. Headl i ght On and
TCast | eSceneCor e. Cust onHeadl| i ght to control the headlight of given scene.
You can aso control headlight globaly by overriding the viewport and scene manag-
er method TCast | eAbstract Vi ewport. Headl i ght . TCast | eSceneCor e. At -
tri but es. UseScenelLi ght s controls normal scene lights.

To use main scene lights on other 3D objects as well, you have a comfort-
able TCast| eAbstract Vi ewport. Used obal Li ghts. You can also override
TCast| eAbstract Viewport.InitializelLights. For example, in games you
may want to render various 3D things: for example you have one mostly static 3D model for
level and various creature models. And it may be desirable to use level lights for everything.
UsingTCast | eAbstract Vi ewport. Used obal Li ghts = true doesthisfor you.

I use this technique in my games. For example see “The Castle” [https://castle-engine.io/
castle.php] levels.

6.2. Geometry arrays

The key moment of our rendering process is the TGeonet r yAr r ays class. An instance
of this class stores all the per-vertex information about the given VRML/X3D shape. For
every VRML/X3D shape, we can generate an instance of TGeometryArrays by appropriate
TArraysGenerator descendant (see ArraysGenerator unit and ArraysGenerator function). The
renderer can use such TGeometryArrays instance to easily render the shape with OpenGL.

TGeometryArrays stores the information about vertex positions, normal vectors, optional
colors, texture coordinates (for all texture units), GLSL attributesand more. Thisinformation
issplit into two arrays.

1. onearray keepsinterleaved vertex positions and normals. We call it the coordinate array.

2. one array keeps interleaved other optional vertex data, like colors, texture coordinates,
GLSL attributes etc. We call it the attribute array.

Both arrays are interleaved, allowing for fast rendering.

Separating the information into two arrays is good for dynamic shapes. When the shape
coordinate changes, we have to change vertex positions and normal vectors, but the other
attributes stay the same. Thanks to the fact that we have separate coordinate and attribute
arrays, we can update only one of them when needed. Currently, we even have two separate
VBO for coordinate and attribute arrays.

Together, the coordinate and attribute arrays describe the compl ete per-vertex information.
TGeometryArrays.Count is the number of vertexes. TGeometryArrays.AttributeSize is the
size (in bytes) of one vertex in attribute arrays, and a similar TGeometryArrays.Coordinate-
Sizeisthe size of one vertex in coordinate array. Currently, coordinate arrays aways stores
vertex positions and normals, so CoordinateSize is actually a constant (6 * size of a sin-
gle-precision float).

Thereisaathird, optional, array stored inside TGeometryArrays: the indexes array.

* When Indexes exist, then you can render shape using glDrawElements. Each index (item
on Indexesarray) isaninteger between 0 and TGeometryArrays.Count - 1). Indexes.Count

72

https://castle-engine.io/x3d_extensions.php#section_ext_headlight
https://castle-engine.io/castle.php
https://castle-engine.io/castle.php
https://castle-engine.io/castle.php

OpenGL rendering

6.2.1.

6.2.2.

vertexes will be drawn. A single vertex (in coordinate / attribute arrays) may be accessed
many times, by using the same index many timesin the Indexes array.

* When Indexes do not exist, you can render using glDrawArrays. In this case, exactly TGe-
ometryArrays.Count vertexes will be drawn.

Rendering with indexes is nice, as we conserve memory, and alow OpenGL to cache and
reuse transformation and lighting cal culation results for repeated indexes. Unfortunately, it's
often not possible. Consider e.g. a cube with per-face normal vectors. Although you have
only 8 different vertex positions, each vertex is present on 3 faces, and on each face must be
rendered with different normal. This means that you have to passto OpenGL 8 * 3 vertexes
(or, equivalent, 6 * 4 = 6 faces * 4 vertexes). There's no point using indexes, and OpenGL
couldn't reuse lighting calculation results anyway.

Our generator alwaystriesto createindexes, if possible. Run view3dscene with --debug-1og,
load your scene, and look for thelinesRender er: Shape XXX is rendered with
i ndexes: FALSE/ TRUEinthelog. Thiswill show youhow well it worksfor your shapes.

Rendering using geometry arrays and VBO

For each shape that needs to be rendered, our renderer wants to generate a corresponding
TGeometryArray. If an array is not created yet, a temporary generator (TArraysGenerator
instance) is created, that in turn creates TGeometryArray instance corresponding to given
VRML/X3D geometry.

Then the geometry array datais loaded into OpenGL vertex buffer objects. We use separate
vertex buffer objects for coordinate array, attribute array and indexes array.

After loading the data to VBO (which means that the data is hopefully copied into fast
GPU memory), werelease the allocated memory inside TGeometryArray instance. Sincethat
point, the data is only inside VBO, and TGeometryArray.DataFreed is true. Thisis avery
nice memory conservation technique, the datais freed immediately after loading it to GPU.
We haveto keep the TGeometryArray instance (but with underlying array memory freed), as
TGeometryArray knows the offsets of various attributes (colors, texture coords etc.) in the
data. Effectively, TGeometryArray describes the layout of memory that isloaded into VBO.

When we detect a change to VRML/X3D model, we only regenerate and reload to VBO
needed information. For example, if you animate a shape coordinate, we only need to rel oad
VBO containing the coordinate array (vertex positions and normal vectors). Y ou can seethis
optimization if you run view3dscene with --debug-log and load a model where shape coor-
dinates change (for example, try deno_nodel s/ x3d/ wor m cr awl . x3dv). Log lines
likeRenderer: Loading data to existing VBGs (1,2,3), reloading
[Coor di nat e] indicate that only coordinates needed to be reloaded.

Caching of shapes arrays and VBOs

To conserve memory usage, in case you use the same geometry many times, the processis
actually alittle more complicated than described in the previous section. We have a cache,
that stores TGeometryArrays instance and three VBO identifiers, in a TShapeCache class.
Many shapes can use the same T ShapeCache instance (and thus share the same TGeometr-
yArraysand VBO), for example when you reUSE VRML/X3D geometry, or when you have
precalculated animation with the same geometry static for a number of frames. This cache

73

OpenGL rendering

allows to conserve memory and speedup rendering and loading time, in some cases making
alarge improvement.

1. If you use precalculated animation (through the TCast | ePr ecal cul at edAni nma-
ti on, for details see later Chapter 7, Animation) then this allows to conserve memory.
The shapes that are still (or change only stuff outside of arrays’VBOs, for example only
change transformation) will share the same arrays/VBO. This can be ahuge memory sav-
ing, as only asingle array/VBO triple may be needed for many animation frames. Very
important since generating many arrays/'VBOsfor TCast | ePr ecal cul at edAni ma-
t i on isgeneraly very memory-hungry operation.

For example, arobot moves by bendingit'slegs at the knees. But the thighs and the calves
shapes remain the same, only the transformations of the calves change.

2. When you have a scene that uses the same shape many times but with a different trans-
formation. For example aforest using the same tree model s scattered around. In this case
all the trees can share resources, this can be a huge memory saving if we have many trees
in our forest.

Figure6.1. All thetreesvisible on this screenshot areactually the same
treemodel, only moved and rotated differently.

Flying (16 more seconds)

Note that for some features, the caching cannot be as efficient. This includes things like
Attri but es. OnBef or eVer t ex andthevolumetric fog. Inthese cases, two shapes must
have equal transformation to look exactly the same. So in these cases (this is automatically
detected by the engine) we have alittle less sharing, and use more memory.

For example, look at these two trees on a scene that uses the blue volumetric fog.

74

OpenGL rendering

6.3.

Figure 6.2. Thecorrect rendering of the treeswith volumetric fog

Figure 6.3. The wrong rendering of the trees with volumetric fog, if
we would use the same arrays/VBO (containing fog coor dinate for each
vertex) for both trees.

Basic OpenGL rendering

TGLRender er class does the basic OpenGL rendering of VRML nodes.

“Basic” rendering means that this class is not supposed to choose the order of rendering of
VRML nodes. This implicates that TGLRender er is not responsible for doing optimiza-
tions that pick only some subset of VRML nodes for rendering (for example, only the nodes
visible within the camerafrustum). Thisalso implicatesthat it's not responsible for arranging
the rendering order for OpenGL blending, see Section 6.4.1, “Materia transparency using
OpenGL alphablending”. Infact, it doesn't set any OpenGL blending parameters (aside from
setting colors apha values as appropriate).

This limitation is done by design. A higher-level routines will internally use an instance of
this class to perform rendering. These higher-level routines should choose in what shapesto
render, and in which order. In the next Section 6.4, “VRML scene class for OpenGL” we
will get familiar with such higher-level class.

Theway to use TGLRender er lookslike this:

1. First you must call Pr epar e method for al the St at e instances that you want to later
use for rendering. Y ou can obtain such St at e instances for example by a traverse call-

75

OpenGL rendering

back discussed earlier in Section 3.6, “Traversing VRML graph”. The order of calling
Pr epar e methods doesn't matter — it's only important for you to prepare all states be-
fore you will render them.

For example Pr epar e callsmay load texturesinto OpenGL, and triangul ate outline fonts
(used by VRML Text and Asci i Text nodes).

Youarefreetomix Pr epar e callswith any other rendering callsto OpenGL. Thisdoesn't
matter, as Pr epar e only prepares some resources, without changing OpenGL state. Y ou
cannot delete yourself any resources (texture names, display lists, buffer objects etc.) re-
served inside Pr epar e calls. A properly written OpenGL program should always allo-
cate free resource names using callslike gl GenText ur es anyway.

2. Cdl Render Begi n to start actual rendering. This will set up some OpenGL state that
will be assumed by further rendering calls.

If Attributes. PreserveQpenGLSt at e, this aso does a push of OpenGL at-
tributes stack, so that everything can be restored later by Render End. Unfortunately,
this is quite costly operation, and it's often not needed (when you don't do any custom
OpenGL rendering), so At tri but es. Preser veQpenGLSt at e isfalse by default.

3. Thenyoushouldcall Render Shape for each VRML/X3D shapethat you want to render.
As mentioned earlier, all the shapes have to be previously prepared by aPr epar e cal.

4. Finaly after you rendered all your shapes, you should call Render End.

Between Render Begi n and Render End you are not allowed to change OpenGL state
in any way except for calling other TGLRender er methods. Well, actually there are
some exceptions, things that you can legitimately do — these include e.g. setting en-
abled state of OpenGL blending. But generally you should limit yourself to calling other
TGL.Render er methods between Render Begi n and Render End.

Of course the scenario above may be repeated as many times asyou want. The key isthat you
will not have to repeat Pr epar e calls each time — once a state is prepared, you can use it
in Render Shape callsas many timesasyou want. If you will not need some state anymore
then you can release some resources alocated by it's Pr epar e call by using UnPr epar e
or UnPr epar eAl | methods.

Note that TALRender er doesn't try to control whole OpenGL state. It controls only the
state that it needs to, to accurately render VRML nodes. Some OpenGL settings that are not
controlled include:

» global ambient light value (gl Li ght Model with GL_LI GHT_MODEL_AMBI ENT pa
rameter),

» polygon mode (filled or wireframe?),

 blending settings.

So you can adjust some rendering properties simply by using normal OpenGL commands.
Also you can transform rendered VRML models simply by setting appropriate modelview
matrix before calling Render Begi n. So rendering done by TGLRender er triesto coop-
erate with OpenGL nicely, acting just like a“complex OpenGL operation”, that plays nicely
when mixed with other OpenGL operations.

However, for various implementation reasons, many other VRML rendering properties can-
not be controlled by just setting OpenGL state beforeusing Render Begi n. Instead you can
adjust them by setting At t r i but es property of TGLRender er .

76

OpenGL rendering

6.3.1. OpenGL resource cache

Often when you render various VRML models, you will use various TGLRender er in-
stances. But till youwant those TGLRender er instancesto share some common resources.
For example, each texture has to be loaded into OpenGL context only once. It would be
ridiculousto load the same texture as many times as there are VRML models using it. That's
why we have TGLRender er Cont ext Cache. It can be used by various renderersto store
common resources, like an OpenGL texture name associated with given texture filename.

Things that are cached include:
» Fontsdisplay lists.

» Texture names. This way you can make your whole OpenGL context to share com-
mon “texture pool” — and all you have to do is to pass the same TG_Render er Con-
t ext Cache instance around.

» Shape information: arrays and VBOs mentioned in previous chapter.

By default, each TGLRender er creates and uses his own cache, but you can create
TG_.Render er Cont ext Cache instance explicitly and just passit down to every OpenGL
renderer that you will create. All higher-level objectsthat use TGLRender er renderer allow
you to pass your desired TGLRender er Cont ext Cache. And you should use it, if you
want to seriously conserve memory usage of your program.

Also notethat when animating, al animation frames of given animation object (TCast | eP-
recal cul at edAni mat i on instance, that will be described in details in Chapter 7, An-
imation) always use the same renderer. So they also always use the same cache instance,
which already gives you some memory savings thanks to cache automatically.

6.3.2. Specialized OpenGL rendering routines vs
Triangulate approach

Historically, we used to have many rendering routines for various nodes. This turned out to
be extremely cumbersome to maintain. The new "geometry arrays' approach unifies this,
tranglating every shape to only a couple of primitives that map nicely to OpenGL (triangles,
quads, quad strips etc.). The "geometry arrays' are also be used to implement TShape. Lo-

cal Tri angul at e and TShape. Tri angul at e. Thus, rendering and triangulating is
nicely unified.

We also have an alternative, debugging renderer that will be used if you define USE_VRM
L_TRI ANGULATI ON symbol for compilation of GLRender er unit. Each node will be
triangulated using TShape. Local Tri angul at e method (mentioned earlier in Sec-
tion 3.7.2, “Triangulating”) and each triangle will be passed to OpenGL. Thisisavery lim-
ited rendering method, only to show that TShape. Local Tri angul at e workscorrectly:

1. It'sslower than normal rendering through arrays and VBOs.

2. Thingsthat are not expressed astriangles (I ndexedLi neSet , Poi nt Set) will not be
rendered at all.

3. It lacks some features, because the triangulating routines do not return enough informa-
tion. For example, only thefirst texture unit gets correct texture coordinates, so multi-tex-
turing doesn't work (correctly).

77

OpenGL rendering

6.4. VRML scene class for OpenGL

TCast | eScene isadescendant of TCast | eSceneCor e (which was introduced earlier
in Section 3.10, “VRML scene”). Internally it uses TGLRender er (introduced in last sec-
tion, Section 6.3, “Basic OpenGL rendering”) to render scene to OpenGL. It also provides
higher-level optimizations and features for OpenGL rendering. In short, thisisthe most com-
fortable and complete class that you should use to load and render static VRML models. In
addition to TCast | eSceneCor e features, it allows you to:

» Render al shapes (i.e. whole VRML scene). Use Render method with ni | as Test -
ShapeVi si bi | i ty parameter for the ssmplest rendering method.

» You canrender only the shapesthat are within current camerafrustum by Render Fr us-
t um Thisworks by checking each shapefor collision with frustum before rendering. Gen-
eraly, it makes a great rendering optimization if user doesn't usually see the whole scene
at once.

* When you initidlize shape octree for rendering, by adding ssRendering to
TCast | eScene. Spati al ,thenRender Fr ust umwill work even better. The shapes
within the frustum will be determined by traversing the shape octree. If your scene has
many shapes then thiswill be faster than without octree.

* In special cases you may be able to create a specialized test whether given shape is visi-
ble. You can cal Render method passing as a parameter pointer to your specialized test
routine. Thisway you may be able to add some specia optimizations in particular cases.

For exampleif you know that the scene uses adense fog and it has a matching background
color (for example by Backgr ound VRML node) then it's sensible to ignore shapes that
arefurther then fog'svisibility range. In other words, you only draw shapeswithin asphere
around the player position.

A working example program that uses exactly this approach is available in our engine
sourcesin thefilecast | e_ganme_engi ne/ exanpl es/vrm /fog_cul I'ing. |-

pr.

On the screenshot below the fog is turned off. Camera frustum culling is used to optimize
rendering, and so only 297 spheres out of all 866 spheres on the scene need to be rendered.

Figure 6.4. Rendering without thefog (camera frustum culling is used)

1)

WG PG I A S tci

(
J (/

78

OpenGL rendering

On the next screenshot the fog is turned on. The same view is rendered. We render only
the objects within fog visibility range, and easily achieve a drastic improvement: only 65
spheres are passed to OpenGL now. Actually we could improve this result even more: in
this case, both camerafrustum culling and culling to the fog range could be used. Screen-
shot suggests that only 9 spheres would be rendered then.

Figure6.5. Rendering with thefog (only objectswithin thefog visibility
range need to berendered)

* TCast | eScene implements material transparency by OpenGL aphablending. Thisre-
quires rearranging the order in which shapes are rendered, that's why it must be done in
this class (instead of being done inside TGLRender er).

Details about this will be revealed soon in Section 6.4.1, “Material transparency using
OpenGL aphablending”.

» TCast| eScene has adso comfortable methods to handle and render VRML Back-
gr ound node of your scene.

6.4.1. Material transparency using OpenGL alpha
blending

To understand the issue you have to understand how OpenGL works. OpenGL doesn't “re-
member” all thetrianglessent toit. Assoon asyou finish passing atriangleto OpenGL (which
means making gl Ver t ex call that completes the triangle) OpenGL implementation is free
to immediately render it. This means mapping the given triangle to 2D window and updating
datain various buffers — most notably the color buffer, but also the depth buffer, the stencil
buffer and possibly others. Right after triangleisrendered thisway, OpenGL implementation
can completely “forget” about thefact that it just rendered thetriangle. All triangle geometry,
materials etc. information doesn't have to be kept anywhere. The only trace after rendering
the triangle is left in the buffers (but these are large 2D arrays of data, and only the human
eye can reconstruct the geometry of the triangle by looking at the color buffer contents).

In summary, this means that the order in which you pass the triangles to OpenGL is signifi-
cant. Rendering opague objects with the help of depth buffer isthe particular and simple case
when this order doesn't matter (aside for issues related to depth buffer inaccuracy or over-
lapping geometry). But generally the order matters. Using apha blending is one such case.

79

OpenGL rendering

To implement VRML material transparency we use materials with alpha (4th color compo-
nent) set to value lower than 1.0. When thetriangleis specified, OpenGL rendersit. A special
operation made is done for updating color buffer: instead of overriding old color values, the
new and old colors are mixed, taking into account apha (which acts as opacity factor here)
value. Of course when rendering transparent triangles they still must be tested versus depth
buffer, that contains at this point information about all the triangles rendered so far within
this frame.

Now observe that depth buffer should not be updated as a result of rendering partially trans-
parent triangle. Reason: partialy transparent triangle doesn't hide the geometry behind it. If
we will happen to render later other triangle (partially transparent or opaque) behind current
partialy transparent triangle, then the future triangle should not be eliminated by the current
triangle. So only rendering opague objects can change depth buffer data, and thus opague
objects hide al (partially transparent or opague) objects behind them.

But what will happen now if you render opague triangle that is behind aready rendered
partialy transparent triangle? The opague triangle will cover the partially transparent one,
because theinformation about partially transparent triangle was not recorded in depth buffer.
For example you will get thisincorrect result:

Figure 6.6. The ghost creatureon this screenshot isactually very closeto
theplayer. But it'stransparent and isrendered incorrectly: gets covered
by the ground and trees.

The solution is to avoid this situation and render all partially transparent objects after all
opaque objects. Thiswill give correct result, like this:

80

OpenGL rendering

Figure 6.7. The transparent ghost rendered correctly: you can see that
it'sfloating right beforethe player.

Actually, inageneral situation, rendering all partially transparent objects after opaque objects
isnot enough. That's becauseif morethan one transparent object isvisible onthe same screen
pixel, then the order in which they are rendered matters — because they are blended with
color buffer in the same order as they are passed to OpenGL. For example if you set your
blending functions to standard (GL_SRC ALPHA, G._ONE_M NUS_SRC_ALPHA) then

each time you render a triangle with color (Red, Green, Blue) and opacity a, the current
screen pixel color (Screenred, SCreengreen, Screengye) changesto

(Screenged, Screengreen, Screengiue) * (1- a) + (Red, Green, Blue) * a

Consider for exampletwo partially transparent triangles, one of them red and the second one

green, both with a set to 0.9. Suppose that they are both visible on the same pixel. If you
render the red triangle first, then the pixel color will be

ScreenColor * (1-a) * (1-a) + RedColor * a * (1 - a) + GreenColor * a =
ScreenColor * 0.01 + RedColor * 0.09 + GreenColor * 0.9 =
visible as GreenColor in practice

If you render green trianglefirst then the anal ogous cal cul ationswill get you pixel color close
to the red.

So the more correct solution to this problem is to sort your transparent triangles with re-
spect to their distance from the viewer. You should render first the objects that are more
distant. Since April 2009 you can activate sorting shapes of transparent objects by setting
Attributes. Bl endi ngSort := true.

However, this solution isn't really perfect. Sorting shapesis only an approximation, in more
general case you should sort singletriangles. Sorting all triangles at each frame (or after each
cameramove) doesn't seem likeagood ideafor a3D simulation that must be donein real-time
asfast as possible. Moreover, there are pathological cases when even sorting trianglesis not
enough and you will have to split triangles to get things 100% right. So it's just not possible
to overcome the problem without effectively sorting at each screen pixel separately, which
is not doable without hardware help.

That's why our engine by default just ignores the order problem (At t ri but es. Bl end-
i ngSort isfal se by default). We do not pay any attention to the order of rendering of

81

OpenGL rendering

transparent objects — as long as they are rendered after all opaque objects. In practice, ren-
dering artifacts will occur only in some complex combinations of transparent objects. If you
seldom use atransparent object, then you have small chance of ever hitting the situation that
actually requires you to sort the triangles. Moreover, even in these situations, the rendering
artifacts are usually not noticeable to casual user. Fast real-time rendering is far more impor-
tant that 100% accuracy here.

Moreover, our engineright now by default uses (G._SRC_ALPHA, GL_ ONE) blending func-
tions, which means that the resulting pixel color is calculated as

(Screenged, Screengreen, Screengue) + (Red, Green, Blue) * a

That is, the current screen color isnot scaled by (1 - o). We only add new color, scaled by it's
apha. Thisway rendering order of the transparent triangles doesn't matter — any order will
produce the same results. For some uses (GL_SRC_ALPHA, GL_ ONE) functions look better
than (GL_SRC_ALPHA, G._ONE_M NUS_SRC _ALPHA), for some uses they are worse.
(GL_SRC_ALPHA, GL_ONE) tend to make image too bright (since transparent objects only
increase the color values), that's actually good as long as your transparent objects represent
some bright-colored and dense objects (a thick plastic glass, for example). (G._SRC_AL-
PHA, G._ONE_M NUS_SRC_ALPHA) on the other hand can sometimes unnaturally darken
the opague objects behind (since that's what these functions will do for a dark transparent
object with large apha).

6.4.2. Material transparency using polygon stipple

Other method of rendering material transparency deserves a quick note here. It's done by
polygon stipple, which means that transparent triangles are rendered using specia bit mask.
Thisway part of their pixels are rendered as opaque, and part of them are not rendered at all.
Thiscreatesatransparent |ook on sufficiently large resolution. Order of rendering transparent
objects doesn't matter in this case.

However, the practical disadvantages of this method is that it looks quite, well, ugly. When
we use random stipples (to precisely show different transparency of different objects) then
the random stipples look very ugly:

Figure 6.8. Material transparency with random stipples

82

OpenGL rendering

Instead of using random stipples, we can use acouple of special good-looking prepared regu-
lar stipples. But then we don't have much ability to accurately represent various transparency
values (especially for very transparent objects). And still the results ook quite bad:

Figure 6.9. Material transparency with regular stipples

6.4.3. Shape granularity

Optimizationsdone by TCast | eScene (in particular, frustum culling) work best when the
scene is sensibly divided into a number of small shapes. This means that “internal” design
of VRML model (how it's divided into shapes) matters alot. Here are some guidelines for
VRML authors:

» Don't define your entire world model as one | ndexedFaceSet node, as this makes
frustum culling compare frustum only with bounding box of the whole scene. Unless your
scene is usually visible completely / not visible at al on the screen, in which case thisis
actually a good idea.

» Avoid | ndexedFaceSet nodes with triangles that are scattered all around the whole
scene. Such nodes will have very large bounding box and will be judged as visible from
almost every camera position in the scene, thus making optimizations like frustum culling
less efficient.

* Anidea VRML model is split into many shapes that have small bounding boxes. It's hard
to specify aprecise“optimal” number of shapes, so you should just test your VRML model
as much as you can. Generaly, Render Fr ust umwith ssRender i ng octree should
be able to handle efficiently even models with alot of shapes.

6.4.3.1. Triangle granularity?

Then comes an idea to use scene division into triangles instead of shapes. Thiswould mean
that our optimization doesn't depend on shape division so much. Large shapes would no
longer be a problematic case.

To make this work we would have to traverse triangle octree to decide which triangles are
in the visibility frustum. Doing this without the octree, i.e. testing each triangle against the
frustum, would be pointless, since thisiswhat OpenGL aready does by itself.

83

OpenGL rendering

Such traversing of the octree would have to be the first pass, used only to mark visible tri-
angles. In the second pass we would take each shape and render marked triangles from it.
The reason for this two-pass approach is that otherwise (if we would try to render triangles
immediately when traversing the octree) we would produce too much overhead for OpenGL.
Overhead would come from changing material/texture/etc. properties very often, since we
would probably find triangles from various nodes (with various properties) very close in
some octree leafs.

But this approach creates problems:

» The rendering routines would have to be written much more intelligently to avoid render-
ing unmarked triangles. Thisisnot aseasy asit seemsasit collides with some smart tricks
to improve vertex sharing, like using OpenGL primitives (G._QUAD_STRI P etc.).

» We would be unable to put large parts of rendering pipeline into OpenGL arrays. Con-
structing separate VBO for each triangle has little sense.

That's why this approach is not implemented.

Chapter 7. Animation

7.1

There are two approaches to playing a 3D animation in our engine. They both use
TCast | eScene for playback, start the animation by calling TCast | eScene. Pl ay An-
i mat i on or setting TCast | eScene. Aut oAni mat i on.

Interactive (gITF, X3D, VRML,

Spine...)

This approach means that you load one model file, and the TCast | eScene (actual-
ly, ancestor TCast | eSceneCor e) will make the events work, sending/receiving events
through routes, activating sensors, running scripts etc. Among many things, this means
that world time will be passed to Ti meSensor nodes, alowing you to animate by in-
terpolator nodes. You can also pass user input to TCast | eSceneCor e methods like
TCast | eSceneCor e. KeyDown, and then the user will be able to fully interact with the
VRML scene.

This is what should be used for presenting interactive X3D / VRML world to the user, as
envisioned by X3D / VRML specifications.

7.1.1. 3D formats support

7.2.
tion

This plays animations from:
* OITF,

» X3D,

VRML,

Spine JSON,

* gprite sheets (from .castle-sprite-sheet, Starling, Cocos2d formats)

Non-interactive precalculated anima-

This approach means that at oading time we "fix" the whole the animation. Animation be-
comes something like a 3D movie.

A downsideisthat loading time (and other resources usage, like memory) islarger, especially
for longer animations. That's because we store the whole animation in memory.

Huge advantage of this method: once loaded, animation can be played ultra-fast. Actualy,
it'sasfast adisplaying astill model (currently, thisis exactly what is done under the hood: at
each time, we simply display one chosen frame of animation; in the future this may change,
but still will be lighting fast). That's the reward for long loading time and "fixing" the ani-
mation.

We generally do not recommend this method anymore.

85

Animation

7.2.1. 3D formats support

* castle-anim-frames (Castle Game Engine animations) [https://castle-engine.io/castle_an-
imation_frames.php] format was specifically created to describe precal cul ated animations.

» Wealsoload MD3 (Quake3 engine) animationsto thisform, asthey are especially suitable
for it.

7.2.2. Structural equality

TNodel nt er pol at or classisused to build and render precal culated animations. For each
provided frame we have an associated time. The resulting animation will change the first
model to the last one, such that at any time point we will either use one of the predefined
models (if point in time is close to the model's associated time) or a new model created by
interpolating between two successive modelsin time.

Under the hood, we have quite intelligent algorithm that checks each pair of two successive
models for structural equality. “Structural equality” simply means that the two models are
egual, with the exception of various floating-point fields, on which they may differ. Theidea
isthat we can define linear interpolation between two models that are structurally equal. So
when you specify two structurally equal models for an animation, we can generate many in-
termediate scenes (thisisthe ScenesPer Ti ne parameter to |oading method) that smoothly
show one model changing into the other. This can interpolate any floating-point field value,
like SFCol or, SFFl oat , SFMat ri X, SFRot ati on, SFVec2f and SFVec3f an al
equivaent multi-valued fields (they can differ in values, but still must have the same number
of items).

For example, the first model may be a small sphere with blue color, and the second model
may be a larger sphere with white color. The resulting animation depicts a growing sphere
with color fading from blue to white. More examples:

» Moving, rotating, scaling objects may be expressed by changing transformation values.

» Any kind of morphing (mesh deformation) may be expressed by changing values of | n-
dexedFaceSet coordinates.

» Materials, colors, lights may change. Even such properties like a material transparency,
or alight position or direction.

» Texture coordinates may change to achieve effects like a moving water surface.

Another advantage of structural equality is that we will perform aggressive merging of two
structurally equal models. This means that when two nodes are detected to be exactly equal,
one of them will be removed (and pointers rearranged to both point to the same node in
memory). If the nodes are not exactly equal, we still check their children and possibly merge
them. This is a huge saving in terms of memory, as practically all the non-animated parts
of the model will only be kept once in memory. It's implemented quite intelligently, so it's
actually arelatively fast process done during the model loading.

All the models of the animation do not actually have to be structurally equal. Y ou can even
change one model into something compl etely different. But in these cases we cannot generate
smooth transition from one model to the other, and the animation will just show a sudden
change into new version at it'stime.

86

https://castle-engine.io/castle_animation_frames.php
https://castle-engine.io/castle_animation_frames.php
https://castle-engine.io/castle_animation_frames.php

Animation

If you're concerned that possibly some parts of your animation are not structurally equal,
you can always load them into view3dscene [https://castle-engine.io/view3dscene.php] run
with - - debug- | og command-line option. Then, at loading time, you will get messages
on console if two successive models were not detected as structurally equal (and so a sharp
change from one to the other will be shown in animation). The message will also describe
exactly where the difference is found.

7.2.3. Generating intermediate scenes

First of al, the scenes are not inter polated when rendering. Instead, at loading time, we cre-
ate a number of new interpolated models and save them (along with the models that were
specified explicitly). The parameter ScenesPer Ti me sayswith what granularity the inter-
mediate scenes are constructed for atime unit.

If you specify too large ScenesPer Ti e your animations will take alot of timeto prepare
and will require alot of memory. On the other hand too small ScenesPer Ti nme vaue will
result in an unpleasant jagged animation. Ideally, ScenesPer Ti e should be >= than the
number of frames you will render in your time unit, but thisis usually way too large value.

Special value of 0 for ScenesPer Ti me means that you want only the explicitly passed
nodes in the scene, nothing more. No more intermediate scenes will ever be created. This
creates atrivial animation that suddenly jumps from one still model to the next at specified
times. It may be useful if you already have generated a lot of models, densely distributed
over time, and you don't need TNodel nt er pol at or toinsert any more scenes. Structural
equality (or it'slack) doesn't change thelook of such animation, asno additional interpolation
isdonewhen loading, but still structurally equal models may be merged to conserve memory
use.

Internally, the TNodel nt er pol at or wraps each moddl (that was specified explicitly or
created by interpolation) in anew node. This meansthat we have all the features of our static
OpenGL rendering available when doing animations too.

7.2.4. Storing precalculated animations in cas-
tle-anim-frames files

We have a special file format to express precal culated animations. castle-anim-frames, Cas-
tle Game Engine animations [https://castle-engine.io/castle_animation_frames.php]. It ref-
erences a number of static 3D model files and their corresponding times, describing the an-
imation.

If you want to experiment with castle-anim-frames format, view3dscene [https.//cas-
tle-engine.io/view3dscene.php] can load and play animations in castle-anim-frames for-
mat. You can find example castle-anim-frames animations in VRML/X3D demo models
[https://castle-engine.io/demo_models.php] (seedirectory cast | e- ani m f r anes/), the
sources of our engine also contain simple examples in directory cast| e_gane_en-
gi ne/ exanpl es/ (likeresour ce_ani mati ons that plays animations specified in
resour ce. xm filesfor game creatures/items). Also “The Castle” [https://castle-engine.
io/castle.php] uses such animations for all creatures and weapons.

In genera, using a single gITF, X3D, VRML, Spine file is a much better approach than
castle-anim-frames files.

87

https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/castle_animation_frames.php
https://castle-engine.io/castle_animation_frames.php
https://castle-engine.io/castle_animation_frames.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/demo_models.php
https://castle-engine.io/demo_models.php
https://castle-engine.io/castle.php
https://castle-engine.io/castle.php
https://castle-engine.io/castle.php

Animation

Also, castle-anim-frames files may waste alot of disk spaceif your animation triesto change
two pieces of your model with drastically different speeds. Consider this:

1. It'sOK to create an animation with a box that blinks (changes color) 100 times per time
unit. Just 2 model filesare needed for this, with castle-anim-framesfile specifying to loop
them over a short period of time.

2. It'salso OK to create an animation with aspherethat blinksonly oncefor agiven time unit.

3. But if you want to create an animation that contains both the box (blinking 100 times/
time unit) and the sphere (blinking once for a time unit), you will have to prepare 100
still 3D filesto express this!

VRML interpolators don't have this problem, since every interpolator hasit's own set of keys.
So both can be placed within the same file, without the need to explicitly write 100 values
anywhere.

Despite this, there remains one practical advantage of using castle-anim-frames file format:
you can design your animations using any authoring software that can export static VRML
files. If your modeler can design animations, but doesn't save them to VRML interpolator
nodes, all you haveto doisto export your modelsacouple of timesfrom acouple of different
pointsin time.

Inthe old days, this allowed usto use Blender [http://www.blender3d.org/] do design anima-
tions and export them. Nowadays, we export from Blender to gITF using standard Blender
exporter, and there's no need for castle-anim-frames.

88

http://www.blender3d.org/
http://www.blender3d.org/

Chapter 8. Shadow Volumes

You can easily render shadow volume for any TCastleScene by
TCast | eScene. Render ShadowVol une method. Some features (see any article about
shadow volumes to know what they mean) :

* Silhouette edge detection isdone, of course the model must be 2-manifold for thisto work.

ManifoldEdges structureis prepared once during pre-processing step (by Pr epar eRen-
der cal with pr Shadowol une, or simply onfirst call to Render Shadowvol une).
This allows rendering shadow quads with silhouette detection in O(n+m) time, where n
is a number of edges and m is a number of triangles (these are roughly equal since on a
perfect 2-manifold 3* m = 2 * n). Without calculated ManifoldEdges, this would have
to take square time, O(n).

To account also modelsthat are not completely 2-manifold, we have BorderEdges|ist with
edges that have only one neighbor triangle. Actually, it lists edges with any odd number
of neighbors (each neighbor pair makes one edge in ManifoldEdges, and then one left
neighbor makes one BorderEdges item). All BorderEdges are always considered part of
the silhouette. Thisisnot aperfect solution, further in this chapter | present when thisfails.
When it fails, there are two solutions:

1. fix the model to be 2-manifold.
2. or use the much slower algorithm version that doesn't do silhouette edge detection.

* Both Z-pass and Z-fail approaches are done. We automatically detect when Z-fail is need-
ed, and in 99% of the cases we can use faster Z-pass approach.

» Both positional and directional lights are supported.

» Using homogeneous coordinates tricks. we render shadow quads vertexesin real infinity,
and we can use perspective projection that has no far clipping plane.

» We do shadow volume culling for scenes (that is, we try to avoid rendering shadow quads
when it's obvious the scene shadow can't be visible within current camera frustum). Im-
plemented in TGLShadowVol uneRender er . | ni t Scene. It's not fully implement-
ed, we could take more conservative convex hull between light position and frustum. But
it seems that thiswouldn't improve culling significantly, current approach gives us amost
as much as we can get from frustum culling.

More drastic improvements can only come from the use of portals.

8.1. Quick overview how to use shadow
volumes in our engine

Actually, our TCast | eSceneManager does pretty much everything for you. Just set
ShadowVol unesPossi bl e and ShadowWol unmes tot r ue. That's it — we will take
care to render with shadow volumes.

* You can change ShadowVol unes dynamically during the game (for example, if user
changes video preferences).

89

Shadow Volumes

8.2.

» ShadowVol unesPossi bl e should remain constant and reflect whether we have sten-
cil buffer available. Dynamically changing ShadowMol unesPossi bl e isactually al-
lowed, but it may cause costly recalculation once the models are actually loaded. Also,
projection may need to be reapplied (only when ShadowVol unesPossi bl e, weforce
infinite far plane, which is needed for z-fail, when cameranear plane isinside the shadow
volume).

Y ou should also take care to initialize OpenGL context requiring stencil buffer (8-bit should
be enough for practical uses). This is something that has to be requested outside of scene
manager. The simplest way to do this is to use TCast| eW ndow. OpenOpt i onal -
Mul ti Sanpl i ngAndSt enci | method instead of TCast | eW ndow. Qpen, see ex-
anpl es/vrm /sinplest_vrm _browser_w th_shadow vol unes. | pr.

To actualy define what lights are used for shadow volumes, set shadowVol unes and
shadowVol unmesMai n to true on some VRML/X3D light node. See https://castle-engine.
io/x3d_extensions.php#section_ext_shadows for details. Alternatively, you can control the
main light source by overriding TCast | eSceneManager . Mai nLi ght For Shadows.

If you defineyour own T3D descendant, be sureto override T3D. Render ShadowVol une
method. See AP reference for details now to handleit.

You can change Recei veShadowVol unes and Cast ShadowVol unes properties of
every T3D descendant.

The whole approach is quite flexible and is used throughout my whole engine, and it will
use all implemented shadow volume optimizations under the hood. For example, see "The
Castle" game, where almost everything may have a shadow rendered by shadow volumes
— creatures, level scene, level objects. And everything goes through this same approach,
getting all optimizations.

Inspecting models manifold edges

Y ou can see how silhouette edge detection goes, which edges from ManifoldEdges (2 neigh-
bors) are qualified as silhouette and which edges were detected as BorderEdges. Thisisavail-
ableinvi ewddscene by View -> Fill mode -> Slhouette and Border Edges menu item.

90

https://castle-engine.io/x3d_extensions.php#section_ext_shadows
https://castle-engine.io/x3d_extensions.php#section_ext_shadows

Shadow Volumes

Figure 8.1. Fountain level, no shadows

FPS : 108.98 (real : 26.48)
Shadow maybe visible {sv culling): TRUE
INCR/DECR WRAP available: TR UEN

Figure 8.2. Fountain level, shadows turned on

FPS:66.70 (real : 6.36)

Shadow maybe visible {sv culling): TRUE
INCR/DECR WRAP available: TRLUENS

Now, turn edges on. Silhouette edges detected are drawn yellow (these depend on light po-
sition relative to the model). Blue edges are BorderEdges (these are independent from light
position, they are simply edges with only 1 neighbor triangle).

91

Shadow Volumes

Figure 8.3. Fountain level, edges marked

FPS : 66.34 (real : 15.13)
Shadow maybe visible (sv culllng): TRUE
INCR/DECR WRAP available: TRUE

Figure 8.4. Fountain level, only edges

FPS 113 39 (real 18 48) -
-Shadow maybe visible (v culling): TRUE)
INCR/DECR_WRAP available: TRUE

8.3. Ghost shadows

Well known, practically unavoidable problem with shadow volume algorithm are ghost shad-
ows. See example below:

92

Shadow Volumes

Figure 8.5. Ghost shadows

Totally unrelated room 2 Room 1

Bad ghost shadow Good shadow

Thisispractically unavoidable, sinceto fix this, you would have to cap shadow quads where
theroom 1 ends. Thisisvery computationally intensive task (for real-time graphics at least),
since you must cal culate the common part of two 3D objects.

8.4. Problems with BorderEdges (models
not 2-manifold)

8.4.1. Lack of shadows (analogous to ghost shad-
OWS)

Using BorderEdges idea, to force silhouette edge detection even with non-2-manifold mod-
els, can cause artifacts for similar reasons as "ghost shadows". But in this case, the effect
is that not enough of the area is covered by shadow (as opposed by normal ghost shadows
artifacts that cause too much area to be covered by shadow). This artifacts are similarly un-
avoidable, on the same reasoning.

93

Shadow Volumes

Figure 8.6. Lack of shadows, problem analogous to ghost shadows

N
PO

Blueis proper shadow

Y ellow areas should be in shadow too,

but they are not --- border edges cause effect
similar to ghost shadows, but here they prevent
shadows.

8.4.2. Not closed silhouettes due to BorderEdges

Y et another problem related to BorderEdges is the fact that silhouettes may be not closed
properly. Why? Because part of the silhouette goes on the border edges. To make silhouettes
closed, we would have to render shadow quads for some border edges twice (or not at all),

yet I'm not sure for now how can | do this easily.

Iustrated example why and when this praoblem occursis below. Consider a cylinder capped
at the top and open at the bottom.

94

Shadow Volumes

Figure 8.7. A cylinder capped at the top, open at the bottom

Now assume apositional light abovethiscylinder. Thelight isabove, but not precisely above
—that is, thelight lightsthe top and some sides of the cylinder. Image below shows generated
shadows quads, silhouette (yellow) edges and border (blue) edges.

Figure 8.8. Cylinder open at the bottom with shadow quads

FPS : 47.57 (real : 6.97)

Shadow maybe visible {sviculling):
INCR/DECR WRAP availablef TRUE

The last image shows the same thing as above, but the cylinder geometry is not rendered, to
makethingsclear. Y ou should be ableto seewhat's going wrong here: part of theblue (border)

95

Shadow Volumes

edges should be part of the silhouette too. The blue edges on the right side should either
produce two shadow quads, or none at al. Otherwise the shadow volume is not correctly
closed, and the shadows appear on completely wrong places of the screen.

Figure 8.9. Cylinder open at the bottom with shadow edges

FPS : 67.44 (real : 9.80)
Shadow maybe visible {sviculling}):
INCR/DECR WRAP available: TRUE

Solution, as usua for BorderEdges problems, is to avoid them: make your models truly 2-
manifold, or use slower version of algorithm without silhouette edge detection.

8.4.3. Invalid capping for z-fail method

Another artifact is painfully visible when rendering such models using z-fail method (used
when camera is inside shadow volume). Z-fail requires that shadows volume is capped, i.e.
we have to render light cap (triangles facing light, on shadow caster position) and dark cap
(triangles facing light, extruded to infinity). But in case of non-2-manifold models, triangles
facing light may not cap the volume fully. In fact, for non-2-manifold models, it's possible
that no triangles will face the light — even when shadow volume exists !

Below we see screenshots of tri angl e. x3dv test (see engine demo models, shad-
ow_vol unes dir). All screenshors were done with z-fail method forced. The shadow cast-
er in this case is a simple single triangle. It's not 2-manifold, it has 3 BorderEdges. The
first screenshot shows the correct result: triangle correctly shadows the environment. Second
screenshot shows the same scene with shadow volumes drawn, so that we can see what's
going on.

96

Shadow Volumes

Figure 8.10. Good shadow from a singletriangle

Figure 8.11. Good shadow from a single triangle, with shadow volumes
drawn

Now, what happens if we simply rotate the triangle, so that the other side of it is visible?
The situation seems completely analogous, so we would expect to see the same effect... But
we don't.

97

Shadow Volumes

Figure 8.12. Bad shadow from a singletriangle

We see that triangle is incorrectly in it's own shadow, and we see another strange shadow
of the triangle. What happened here? These are both the effects of lacking the caps for z-
fail method:

1. Lack of light cap means that triangle is considered in it's own shadow. In fact, anything
between the triangle and the camera (regardless of light position !) would be considered
in shadow, because the shadow cap is "open” there.

2. Lack of dark cap means that somewhere in infinity there's a place where one front facing
shadow quad isvisible, but no back facing shadow quads. This meansthat valuein stencil
buffer is-1, soit's not zero, so the pixels are considered in shadow.

Now, why both the caps are lacking? Because there are no triangles in the model that are
front-facing to the light. In this simple scene, there's only one triangle: when it's front-facing
to the light, we're lucky and things work fine, but when it's back-facing to the light, errors
occur.

98

Chapter 9. Links
9.1. VRML / X3D specifications

VRML 1.0 specification [http://www.web3d.org/x3d/specifications/vrml/VRML1.0/in-
dex.html]

VRML 2.0 (also caled VRML 97) specifications [http://www.web3d.org/x3d/specifica
tions/vrml/]

The Annotated VRML 97 Reference [http://accad.osu.edu/~pgerstmalclass/vnv/re-
sources/info/AnnotatedV rmlRef/Book.html]

X3D specifications [http://www.web3d.org/x3d/specifications/]

9.2. Author's resources

Our VRML / X3D engine homepage [https://castle-engine.io/], including:

Engine documentation [https://castle-engine.io/engine doc.php] — the document that
you're reading right now

view3dscene[https://castle-engine.io/view3dscene.php] — VRML (1.0, 2.0), X3D brows-
er, and aviewer for other 3D formats (3DS, OBJ, Collada, MD3, others)

rayhunter [https.//castle-engine.io/rayhunter.php] — command-line ray-tracer, and it's
galery [https://castle-engine.io/raytr_gallery.php]

overview and sources of my engine [https://castle-engine.io/engine.php] and their refer-
ence [https://castle-engine.io/reference.php]

VRML / X3D implementation status [https://castle-engine.io/x3d_implementation_status.
php]

VRML / X3D test suite [https://castle-engine.io/demo_models.php]

Specification of my extensionsto VRML / X3D [https.//castle-engine.io/x3d_extensions.
php]

See also author's private homepage [http://michalis.ii.uni.wroc.pl/~michalis/].

99

http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index.html
http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index.html
http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index.html
http://www.web3d.org/x3d/specifications/vrml/
http://www.web3d.org/x3d/specifications/vrml/
http://www.web3d.org/x3d/specifications/vrml/
http://accad.osu.edu/~pgerstma/class/vnv/resources/info/AnnotatedVrmlRef/Book.html
http://accad.osu.edu/~pgerstma/class/vnv/resources/info/AnnotatedVrmlRef/Book.html
http://accad.osu.edu/~pgerstma/class/vnv/resources/info/AnnotatedVrmlRef/Book.html
http://www.web3d.org/x3d/specifications/
http://www.web3d.org/x3d/specifications/
https://castle-engine.io/
https://castle-engine.io/
https://castle-engine.io/engine_doc.php
https://castle-engine.io/engine_doc.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/view3dscene.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/rayhunter.php
https://castle-engine.io/raytr_gallery.php
https://castle-engine.io/raytr_gallery.php
https://castle-engine.io/engine.php
https://castle-engine.io/engine.php
https://castle-engine.io/reference.php
https://castle-engine.io/reference.php
https://castle-engine.io/reference.php
https://castle-engine.io/x3d_implementation_status.php
https://castle-engine.io/x3d_implementation_status.php
https://castle-engine.io/x3d_implementation_status.php
https://castle-engine.io/demo_models.php
https://castle-engine.io/demo_models.php
https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/x3d_extensions.php
https://castle-engine.io/x3d_extensions.php
http://michalis.ii.uni.wroc.pl/~michalis/
http://michalis.ii.uni.wroc.pl/~michalis/

Version of this document

This documentation started it's life as my master's thesis, under the titte VRML processing and
rendering engine, and under the supervision of dr Andrzej Lukaszewski. It was submitted
and passed in September 2006 by the Institute of Computer Science a University of

Wroctaw in Poland. If you're curious, you can find this old version at http://www.ii.uni.wroc.pl/~anl/
MGR/.

Our engine evolved quite a lot since that time, and so this documentation was heavily updated and
extended since then.

100

http://www.ii.uni.wroc.pl/~anl/MGR/
http://www.ii.uni.wroc.pl/~anl/MGR/

	Castle Game Engine internals
	Table of Contents
	Goals
	Chapter 1. Overview of VRML
	1.1. First example
	1.2. Fields
	1.2.1. Field types
	1.2.2. Placing fields within nodes
	1.2.3. Examples

	1.3. Children nodes
	1.3.1. Group node examples
	1.3.2. The Transform node
	1.3.3. Other grouping nodes

	1.4. DEF / USE mechanism
	1.4.1. VRML file as a graph

	1.5. VRML 1.0 state
	1.5.1. Why VRML 2.0 is better

	1.6. Other important VRML features
	1.6.1. Inline nodes
	1.6.2. Texture transformation
	1.6.3. Navigation
	1.6.4. IndexedFaceSet features
	1.6.5. Prototypes
	1.6.6. X3D features
	1.6.7. Events mechanism
	1.6.8. Scripting
	1.6.9. More features

	Chapter 2. Scene Manager
	2.1. Scene manager, and basic example of using our engine
	2.2. Manage your own scene manager
	2.3. 2D controls manager
	2.4. Custom viewports

	Chapter 3. Reading, writing, processing VRML scene graph
	3.1. TVRMLNode class basics
	3.2. The sum of VRML 1.0 and 2.0
	3.3. Reading VRML files
	3.4. Writing VRML files
	3.4.1. DEF / USE mechanism when writing
	3.4.2. VRML graph preserving

	3.5. Constructing and processing VRML graph by code
	3.6. Traversing VRML graph
	3.7. Geometry nodes features
	3.7.1. Bounding boxes
	3.7.2. Triangulating

	3.8. WWWBasePath property
	3.9. Defining your own VRML nodes
	3.10. VRML scene
	3.10.1. VRML shape
	3.10.2. Simple tree of shapes
	3.10.3. Events
	3.10.4. Various comfortable routines
	3.10.5. Caching
	3.10.6. Events and ChangedField notifications

	Chapter 4. Octrees
	4.1. Collision detection
	4.2. How octree works
	4.2.1. Checking for collisions using the octree
	4.2.2. Constructing octree

	4.3. Octrees for dynamic worlds
	4.3.1. Transforming between world and local coordinates
	4.3.2. The future — dynamic irregular octrees

	4.4. Similar data structures

	Chapter 5. Ray-tracer rendering
	5.1. Using octree
	5.2. Classic deterministic ray-tracer
	5.3. Path-tracer
	5.4. RGBE format
	5.5. Generating light maps

	Chapter 6. OpenGL rendering
	6.1. VRML lights rendering
	6.1.1. Lighting model
	6.1.2. Rendering lights

	6.2. Geometry arrays
	6.2.1. Rendering using geometry arrays and VBO
	6.2.2. Caching of shapes arrays and VBOs

	6.3. Basic OpenGL rendering
	6.3.1. OpenGL resource cache
	6.3.2. Specialized OpenGL rendering routines vs Triangulate approach

	6.4. VRML scene class for OpenGL
	6.4.1. Material transparency using OpenGL alpha blending
	6.4.2. Material transparency using polygon stipple
	6.4.3. Shape granularity
	6.4.3.1. Triangle granularity?

	Chapter 7. Animation
	7.1. Interactive (glTF, X3D, VRML, Spine...)
	7.1.1. 3D formats support

	7.2. Non-interactive precalculated animation
	7.2.1. 3D formats support
	7.2.2. Structural equality
	7.2.3. Generating intermediate scenes
	7.2.4. Storing precalculated animations in castle-anim-frames files

	Chapter 8. Shadow Volumes
	8.1. Quick overview how to use shadow volumes in our engine
	8.2. Inspecting models manifold edges
	8.3. Ghost shadows
	8.4. Problems with BorderEdges (models not 2-manifold)
	8.4.1. Lack of shadows (analogous to ghost shadows)
	8.4.2. Not closed silhouettes due to BorderEdges
	8.4.3. Invalid capping for z-fail method

	Chapter 9. Links
	9.1. VRML / X3D specifications
	9.2. Author's resources

