
The bad way to play chess

3D physics fun using Castle Game Engine (Part 2)

Michalis Kamburelis

Table of Contents

1. Introduction ... 1

2. Coding the game .. 2

3. Exercises ... 3

3.1. Handle a key press to change position of an object 3

3.2. Push the chess piece using physics ... 6

4. Make code aware "what is a chess piece" using behaviors 9

5. Selecting 3D object using the mouse ... 15

5.1. Highlight the chess piece under mouse and allow selecting it 15

5.2. Sidenote: Other ways to show a highlight .. 21

5.3. Sidenote: Shadows ... 22

6. Let user choose the angle and strength to flick the chess piece 22

6.1. Designing a 3D arrow ... 22

6.2. Add the arrow to the main design .. 26

6.3. Letting user control the arrow ... 27

7. Flick that chess piece! .. 30

8. Conclusion and future ideas ... 32

1. Introduction

Welcome to the second part of the article about creating a simple 3D physics game

using Castle Game Engine.

Castle Game Engine is a cross-platform (desktop, mobile, consoles) 3D and 2D game

engine using modern Pascal. It’s free and open-source and works with both FPC and

Delphi.

In the first part, we learned how to use the visual editor and we have designed a

chessboard with chess pieces. Then we used physics to throw the chess piece, such

that it collides and knocks down other chess pieces. Remember this is a bad way to

play chess. But it’s really fun!

1

The bad way to play chess

If you have missed the first part, you can still "jump in" at this point. Just

download Castle Game Engine from https://castle-engine.io/ and either set up

the chessboard and chess pieces yourself, or use our ready example project

from https://github.com/castle-engine/bad-chess/ in the subdirectory project/
version_1_designed_in_editor . This project version is a good starting point for

this article part.

We encourage you to follow this article and perform all the steps yourself, to create a

similar toy. If you ever get stuck, you can look at the finished project. It is available in

the subdirectory project/version_2_with_code in the same repository, https://

github.com/castle-engine/bad-chess/ . It’s the final project, with everything described

in this article done and working.

And if you really just want to play the worst version of chess, right now, you

can download the ready compiled game (for Linux or Windows) from https://castle-

engine.itch.io/bad-chess . Enjoy!

2. Coding the game

The focus of this part is to learn how to use Pascal code to make things happen in

your game.

The core of Castle Game Engine is just a set of Pascal units that can be compiled using

FPC and Delphi. Thus the games we create are also just regular Pascal programs

that happen to use a few Castle Game Engine units. This means that you can use the

workflow you already know and like, with whatever Pascal text editor and compiler you

prefer.

In particular we support Delphi, Lazarus, VS Code or any other custom editor (like

Emacs). We have a dedicated documentation with some IDE-specific hints on https://

castle-engine.io/manual_ide.php . Basically just open in Castle Game Engine editor

the panel "Preferences # Code Editor", configure there which Pascal IDE you use, and

everything should work out-of-the-box. If you double-click on a Pascal file from CGE

editor, it will open in the text editor you configured.

Specifically for VS Code users, we feature a dedicated extension providing perfect

Castle Game Engine integration with VS Code. It provides Pascal syntax highlighting,

code completion and ability to compile, run or debug a Castle Game Engine project

straight from VS Code. Head on to https://castle-engine.io/vscode for links and more

documentation.

2

https://castle-engine.io/
https://github.com/castle-engine/bad-chess/
https://github.com/castle-engine/bad-chess/
https://github.com/castle-engine/bad-chess/
https://castle-engine.itch.io/bad-chess
https://castle-engine.itch.io/bad-chess
https://castle-engine.io/manual_ide.php
https://castle-engine.io/manual_ide.php
https://castle-engine.io/vscode

The bad way to play chess

Note that, while the focus of this chapter is to write Pascal code, we do not stop using

Castle Game Engine editor. There are a few things you can do in the editor to make

the design "friendly" to the code manipulation and we will explore them in this article.

So writing Pascal code, and editing the design visually, go hand-in-hand.

3. Exercises

3.1. Handle a key press to change position of an object

Let’s start simple. First goal: When user presses a key x , we want to move the black

king chess piece a bit higher. It’s a simple test that we can:

• React to user input (key press).

• In response, do something interesting in 3D world (move a chess piece).

Most of the code you write in Castle Game Engine is placed in a unit associated

with a view. We talked about what is a view in Castle Game Engine in the previous

article part, the short recap is that you use views similar to how you use forms in

a typical Delphi FMX / VCL or Lazarus LCL application: a view is a visual design

(in data/gameviewmain.castle-user-interface) and associated code (in

code/gameviewmain.pas).

So let’s open the file code/gameviewmain.pas in your favorite Pascal IDE. In the

Castle Game Engine editor, you can just use the bottom "Files" panel. Enter the code
subdirectory and double-click on the gameviewmain.pas file. Alternatively, you can

3

The bad way to play chess

just open your Pascal IDE and from it open the Pascal project. The basic project files

(like my_project.dproj for Delphi or my_project.lpi for Lazarus) have been

already generated for you.

Keep the Castle Game Engine visual editor open too, with our view design data/
gameviewmain.castle-user-interface . We will occasionally adjust or consult

our visual design, to make sure it is useful for our code logic.

For start, we want to know the name of the component representing the black king.

Just as you’ve seen when designing Lazarus and Delphi forms, every component has a

name which corresponds to how this component can be accessed from code. You can

edit the component name in Castle Game Engine by either editing the Name row in

Object Inspector (on the right) or editing the name in the hierarchy (on the left). Simply

click on the component name in hierarchy or press F2 to go into name editing. On the

screenshot below, you can see that black king is named SceneBlackKing1 . I can

use Ctrl+C to copy this to the clipboard.

Note that, for this first code exercise, we assume that the chess piece

(SceneBlackKing1) does not have any physics components. If you have added

TCastleRigidBody or TCastleXxxCollider components as behaviors of

SceneBlackKing1 , please remove them for now. We will restore them in the next

exercise.

Now we have to declare the variable with the exact same name in the view. It will be

automatically initialized to point to the component when we start the view. Do this in

4

The bad way to play chess

the published section of the class TViewMain . This is how the end result should

look like:

uses Classes,
 CastleVectors, CastleComponentSerialize,
 CastleUIControls, CastleControls, CastleKeysMouse, CastleScene;

type
 { Main view, where most of the application logic takes place. }
 TViewMain = class(TCastleView)
 published
 { Components designed using CGE editor.
 These fields will be automatically initialized at Start. }
 LabelFps: TCastleLabel;
 SceneBlackKing1: TCastleScene; //< new line
 public
 ...

Note: Right now, the Castle Game Engine editor doesn’t do this automatically for

you. That is, we don’t automatically update your Pascal sources to declare all the

components. We have a plan to do this soon. The user experience will have to be a

bit different than on Delphi and Lazarus forms, because the game visual designs can

easily have hundredths of components that are not supposed to be used from code, so

synchronizing them all with Pascal code would create unnecessary noise in your Pascal

unit. We will instead make a button to only expose a subset of designed components

for code.

Once you have declared the published field, we can access the SceneBlackKing1
from code, getting and setting its properties, calling its methods anywhere we like.

For this exercise, let’s modify the Translation property of our chess piece, which

changes the position of the object.

It is a property of type TVector3 . TVector3 is an advanced record in Castle Game

Engine that represents 3D vector — in this case a position, but we use it in many other

cases too, e.g. to represent a direction or even RGB color. There are a number of useful

things defined to help you work with TVector3 , in particular:

• Vector3(…) function returns a new TVector3 value with given coordinates.

• The arithmetic operators like + work with TVector3 values.

This means that we can easily move object by writing a code like this:

5

The bad way to play chess

SceneBlackKing1.Translation := SceneBlackKing1.Translation +
 Vector3(0, 1, 0);

Where to put this statement? In general, you can use this code anywhere in your view

(as long as it executes only after the view has been started). In this case, we want to

react to user pressing a key x . To achieve this, we can edit the TViewMain.Press
method in the view. The empty implementation of this method is already present, with

some helpful comments, so we can just fill it with our code:

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
begin
 Result := inherited;
 if Result then Exit; // allow the ancestor to handle keys

 if Event.IsKey(keyX) then
 begin
 SceneBlackKing1.Translation := SceneBlackKing1.Translation +
 Vector3(0, 1, 0);
 Exit(true); // key was handled
 end;
end;

Build and run the game (e.g. by pressing F9 in Castle Game Engine editor, or in Delphi,

or in Lazarus) and press X to see how it works.

3.2. Push the chess piece using physics

Let’s do one more exercise. Let’s make sure we can use code to push (flick, throw) a

chess piece using physics. The chess piece we push, and the direction in which we

push it, will be hardcoded in this exercise. But we will get confidence that we can use

physics from Pascal code.

Let’s use the black king again.

To do this, make sure to add the physics components to the relevant chess piece.

We described how to do this in 1st article part, the quick recap is to right-click on

the component (SceneBlackKing1 in this case) and from the context menu choose

"Add Behavior # Physics # Collider # Box (TCastleBoxCollider)". Make sure you also

have physics (with TCastleMeshCollider) active on the chess board, otherwise

the chess piece would fall down due to gravity as soon as you run the game.

6

The bad way to play chess

This is how it should look like:

To push it using physics, we want to use the ApplyImpulse method of the

TCastleRigidBody component associated with the chess piece.

• You can get the TCastleRigidBody component using the

SceneBlackKing1.FindBehavior(TCastleRigidBody) method, as shown

below.

Alternatively, you could also declare and access RigidBody1:
TCastleRigidBody reference in the published section of your view. We don’t

show this approach here, just because using the FindBehavior seems more

educational at this point, i.e. you will find the FindBehavior useful in more

situations.

• The ApplyImpulse method takes two parameters: the direction of the impulse (as

TVector3 ; length of this vector determines the impulse strength) and the position

from which the impulse comes (it is simplest to just use the chess piece position

here).

In the end, this is the modified version of TViewMain.Press that you should use:

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
var

7

The bad way to play chess

 MyBody: TCastleRigidBody;
begin
 Result := inherited;
 if Result then Exit; // allow the ancestor to handle keys

 if Event.IsKey(keyX) then
 begin
 MyBody := SceneBlackKing1.FindBehavior(TCastleRigidBody) as
 TCastleRigidBody;
 MyBody.ApplyImpulse(Vector3(0, 10, 0),
 SceneBlackKing1.WorldTranslation);
 Exit(true); // key was handled
 end;
end;

Above we use the direction Vector3(0, 10, 0) which means "up, with strength

10". You can experiment with different directions and strengths. If we’d like to push the

chess piece horizontally we would use a direction with non-zero X and/or Z values, and

leave Y axis zero.

To the uses clause, add also CastleTransform unit, to have

TCastleRigidBody class defined.

As usual, run the game and test. Pressing X should now bump the chess piece up.

You can press X repeatedly, even when the chess piece is already in the air.

As you can see in the code — we don’t secure from it, so we allow to push an

object that is already flying. We will not cover it in this exercise, but you could use

MyBody.PhysicsRayCast to cast a ray with direction Vector3(0, -1, 0) and

see whether the chess piece is already in the air.

8

The bad way to play chess

4. Make code aware "what is a chess piece" using

behaviors

To implement our desired logic, the code has to somehow know "what is a chess piece".

So far, our 3D world is a collection of TCastleScene components, but it does not give

us enough information to distinguish between chess pieces and other objects (like a

chessboard). We want to do something crazy, but we don’t want to flip the chessboard!

At least not this time :)

To "mark" that the given TCastleScene component is a chess pieces we

will invent a new class called TChessPieceBehavior descending from the

TCastleBehavior class. We will then attach instances of this class to the

TCastleScene components that represent chess pieces. In the future this class

can have more fields (holding information specific to this chess piece) and methods.

For start, the mere existence of TCastleBehavior instance attached to a scene

indicates "this is a chess piece".

To know more about how our behaviors work, see https://castle-engine.io/behaviors

for documentation and examples. You can also create a new project from the

"3D FPS Game" template and see how the TEnemy class (descendant of

TCastleBehavior) is defined and used. The behaviors are a very flexible concept

to add information and mechanics to your world and we advise to use them in many

situations.

9

https://castle-engine.io/behaviors

The bad way to play chess

There’s really nothing difficult about our initial TChessPieceBehavior definition. It is

almost an empty class. I decided to only add there a Boolean field that says whether

the chess piece is white or black:

type
 TChessPieceBehavior = class(TCastleBehavior)
 public
 Black: Boolean;
 end;

You can declare it at the beginning of the interface section of unit

GameViewMain . Though larger behavior classes may deserve to be placed in their

own units.

How to attach the behavior instances to the scenes?

1. You could do this visually, by registering the TChessPieceBehavior class in

the Castle Game Engine editor.

This is a very powerful method as it allows to visually add and configure the behavior

properties. See the https://castle-engine.io/custom_components for description

how to use this.

2. Or you can do it from code. In this article, I decided to go with this approach.

This is a bit easier if you have to effectively attach the behavior 32 times, to all

the chess pieces, and there’s no need to specifically configure the initial state of

the behavior. Clicking 32 times "Add Behavior" would be a bit tiresome and also

unnecessary in our simple case (for this demo, all chess pieces really work the

same), so let’s instead utilize code to easily initialize the chess pieces.

To attach a behavior to our SceneBlackKing1 , we would just create the

instance of TChessPieceBehavior in our views’s Start method, and add using

SceneBlackKing1.AddBehavior . Like this:

procedure TViewMain.Start;
var
 ChessPiece: TChessPieceBehavior;
begin
 inherited;
 ChessPiece := TChessPieceBehavior.Create(FreeAtStop);

10

https://castle-engine.io/custom_components

The bad way to play chess

 ChessPiece.Black := true;
 SceneBlackKing1.AddBehavior(ChessPiece);
end;

But this is not good enough for our application. Above we added

TChessPieceBehavior to only one chess piece. We want to add it to all 32 the

chess pieces. How to do it easily? We need to somehow iterate over all the chess

pieces. And to set the Black boolean field, we also should somehow know whether

this is black or white piece. There are multiple solutions:

1. We could assume that all chess pieces have names like SceneWhiteXxx or

SceneBlackXxx . Then we can iterate over Viewport1.Items children, and

check if their Name starts with given prefix.

2. Or we could look at Tag value of scenes, and have a convention e.g. that Tag =
1 means black chess piece, Tag = 2 means white chess piece, and other tags

(Tag = 0 is default, in particular) mean that this is not a chess piece.

3. We could also introduce additional transformation components that group black

chess pieces separately from white chess pieces and separately from other stuff

(like a chessboard).

I decided to go with the latter approach, as introduction of "additional

TCastleTransform components to group existing ones" is a powerful mechanism

in many other situations. E.g. you can then easily hide or show a given group (using

TCastleTransform.Exists) property.

To make this happen, right-click on Viewport1.Items , and choose from the context

menu "Add Transform # Transform (TCastleTransform)".

11

The bad way to play chess

Name this new component BlackPieces . Then drag-and-drop in the editor

hierarchy all the black chess pieces (SceneBlackXxx components) to be children

of BlackPieces . You can easily select all 16 scenes representing black pieces in

the hierarchy by holding the Shift key and then drag-and-drop them all at once into

BlackPieces .

The end result should look like this in the hierarchy:

12

The bad way to play chess

Don’t worry that only the SceneBlackKing1 has the physics components. We will

set the physics components using code soon too.

Now repeat the process to add a WhitePieces group.

This preparation in the editor makes our code task easier. Add to the published section

of TViewMain declaration of BlackPieces and WhitePieces fields, of type

TCastleTransform :

 TViewMain = class(TCastleView)
 published
 ... // keep other fields too
 BlackPieces, WhitePieces: TCastleTransform;

Now iterate over the 2 chess pieces' groups in the Start method:

procedure TViewMain.Start;

 procedure ConfigureChessPiece(const Child: TCastleTransform; const
 Black: Boolean);
 var
 ChessPiece: TChessPieceBehavior;
 begin
 ChessPiece := TChessPieceBehavior.Create(FreeAtStop);
 ChessPiece.Black := Black;
 Child.AddBehavior(ChessPiece);

13

The bad way to play chess

 end;

var
 Child: TCastleTransform;
begin
 inherited;
 for Child in BlackPieces do
 ConfigureChessPiece(Child, true);
 for Child in WhitePieces do
 ConfigureChessPiece(Child, false);
end;

It seems prudent to add basic "sanity check" at this point. Let’s log the number of chess

pieces each side has. Add the following code and the end of the Start method:

WritelnLog('Configured %d black and %d white chess pieces', [
 BlackPieces.Count,
 WhitePieces.Count
]);

To make WritelnLog available, add CastleLog unit to the uses clause. Now when

you run the game, you should see a log

Configured 16 black and 16 white chess pieces

On my first run, I actually saw that I have 17 chess pieces on each side by accident. I

mistakenly added 3 knights instead of 2 (one knight was at exactly the same position

as another, so it wasn’t obvious). I have removed the excessive knight pieces thanks to

this log. Detecting such mistakes is exactly the reason why we add logs and test — so

I encourage you to do it too.

While we’re at it, we can also use this opportunity to make sure all chess pieces have

physics components (TCastleRigidBody and TCastleBoxCollider). So you

don’t need to manually add them all. This is a reasonable approach if the components

don’t need any manual adjustment per-chess-piece.

To do this, extend our ConfigureChessPiece method:

 procedure ConfigureChessPiece(const Child: TCastleTransform; const
 Black: Boolean);
 begin
 ... // keep previous code too

14

The bad way to play chess

 if Child.FindBehavior(TCastleRigidBody) = nil then
 Child.AddBehavior(TCastleRigidBody.Create(FreeAtStop));
 if Child.FindBehavior(TCastleCollider) = nil then
 Child.AddBehavior(TCastleBoxCollider.Create(FreeAtStop));
 end;

As you see above, this approach is quite direct: if you don’t have the necessary

component, just add it. We don’t bother to configure any property on the new

TCastleRigidBody and TCastleBoxCollider instances, as their defaults are

good for our purpose.

This was all a good "ground work" for the remaining article part. Nothing functionally

new has actually happened in our game, you should run it and see that… nothing

changed. All 32 chess pieces just stand still, at the beginning.

5. Selecting 3D object using the mouse

5.1. Highlight the chess piece under mouse and allow selecting it

To implement the real interaction, we want to allow user to choose which chess piece

to flick using the mouse. Castle Game Engine provides a ready function that tells you

what is being indicated by the current mouse (or last touch, on mobile) position. This

is the TCastleViewport.TransformUnderMouse function.

For start, make sure to declare the viewport instance in the published section of

class TViewMain , like this:

MainViewport: TCastleViewport;

Match the name of your viewport in the design. Add unit CastleViewport to the

uses clause to make type TCastleViewport known.

Let’s utilize it to highlight the current chess piece at the mouse position. We can

just keep checking the MainViewport.TransformUnderMouse value in each

Update call.

Note: Alternatively, we could check MainViewport.TransformUnderMouse in

each Motion call, that occurs only when mouse (or touch) position changes. But

doing it in Update is a bit better: as we use physics, some chess pieces may still be

moving due to physics, so the chess piece under the mouse may change even if the

mouse position doesn’t change.

15

The bad way to play chess

To actually show the highlight, we will use a ready effect

available for every TCastleScene that can be activated by setting

MyScene.RenderOptions.WireframeEffect to something else than

weNormal . This is the simplest way to show the highlight (we discuss other ways in

later section).

Before we jump into code, I encourage to experiment with perfect settings of

RenderOptions for highlight in the editor. Just edit any chosen chess piece,

until it seems to have a pretty highlight, and remember the chosen options. The

most useful properties to adjust are WireframeEffect , WireframeColor ,

LineWidth , SilhouetteBias , SilhouetteScale . You can see them

emphasized below — editor shows properties which have non-default values using the

bold font.

I decided to show the currently highlighted (at mouse position) chess piece with

a light-blue wireframe. This chess piece is also set as the value of private field

ChessPieceHover .

Moreover, once user clicks with mouse (we can detect it in Press) the chess

piece is considered selected and gets a yellow highlight. This chess piece is set as

ChessPieceSelected value.

Remembering the ChessPieceHover and ChessPieceSelected values is useful

for a few things. For one thing, we can later disable the effect (when the piece is no

longer highlighted or selected). And it will allow to flick the ChessPieceSelected
in the next sections.

16

The bad way to play chess

We could store them as references to TCastleScene or TChessPieceBehavior .

That is, we could declare:

1. Either ChessPieceHover, ChessPieceSelected:
TChessPieceBehavior; …

2. …or ChessPieceHover, ChessPieceSelected: TCastleScene;

Both declarations would be good for our application. That is, we have to choose one

or the other as it will imply a bit different code, but the differences are really minor. In

the end, we can always get TChessPieceBehavior instance from a corresponding

TCastleScene (if we know it is a chess piece) and we can get TCastleScene
from a TChessPieceBehavior .

• To get TChessPieceBehavior from the corresponding TCastleScene you

would do:

var
 MyBehavior: TChessPieceBehavior;
 MyScene: TCastleScene;
begin
 ...
 MyBehavior := MyScene.FindBehavior(TChessPieceBehavior) as
 TChessPieceBehavior;

• To get TCastleScene from corresponding TChessPieceBehavior you would

do:

var
 MyBehavior: TChessPieceBehavior;
 MyScene: TCastleScene;
begin
 ...
 MyScene := MyBehavior.Parent as TCastleScene;

I decided to declare them as TChessPieceBehavior . If you want to follow my

approach exactly, add this to the private section of class TViewMain :

ChessPieceHover, ChessPieceSelected: TChessPieceBehavior;
{ Turn on / off the highlight effect, depending on whether
 Behavior equals ChessPieceHover, ChessPieceSelected or none of them.
 This accepts (and ignores) Behavior = nil value. }

17

The bad way to play chess

procedure ConfigureEffect(const Behavior: TChessPieceBehavior);

Then add CastleColors unit to the uses clause (of interface or

implementation of unit GameViewMain , doesn’t matter in this case) to define

HexToColorRGB utility.

Finally this is the code of new Update , Press and helper ConfigureEffect
methods:

procedure TViewMain.ConfigureEffect(const Behavior: TChessPieceBehavior);
var
 Scene: TCastleScene;
begin
 if Behavior = nil then
 Exit;
 { Behavior can be attached to any TCastleTransform.
 But in our case, we know TChessPieceBehavior is attached to
 TCastleScene. }
 Scene := Behavior.Parent as TCastleScene;
 if (Behavior = ChessPieceHover) or
 (Behavior = ChessPieceSelected) then
 begin
 Scene.RenderOptions.WireframeEffect := weSilhouette;
 if Behavior = ChessPieceSelected then
 Scene.RenderOptions.WireframeColor := HexToColorRGB('FFEB00')
 else
 Scene.RenderOptions.WireframeColor := HexToColorRGB('5455FF');
 Scene.RenderOptions.LineWidth := 10;
 Scene.RenderOptions.SilhouetteBias := 20;
 Scene.RenderOptions.SilhouetteScale := 20;
 end else
 begin
 Scene.RenderOptions.WireframeEffect := weNormal;
 end;
end;

procedure TViewMain.Update(const SecondsPassed: Single; var
 HandleInput: Boolean);
var
 OldHover: TChessPieceBehavior;
begin
 inherited;

 LabelFps.Caption := 'FPS: ' + Container.Fps.ToString;

18

The bad way to play chess

 OldHover := ChessPieceHover;

 if MainViewport.TransformUnderMouse <> nil then
 begin
 ChessPieceHover :=
 MainViewport.TransformUnderMouse.FindBehavior(TChessPieceBehavior)
 as TChessPieceBehavior;
 end else
 ChessPieceHover := nil;

 if OldHover <> ChessPieceHover then
 begin
 ConfigureEffect(OldHover);
 ConfigureEffect(ChessPieceHover);
 end;
end;

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
var
 MyBody: TCastleRigidBody;
 OldSelected: TChessPieceBehavior;
begin
 Result := inherited;
 if Result then Exit; // allow the ancestor to handle keys

 // ... if you want, keep here the handling of keyX from previous
 exercise

 if Event.IsMouseButton(buttonLeft) then
 begin
 OldSelected := ChessPieceSelected;
 if (ChessPieceHover <> nil) and
 (ChessPieceHover <> ChessPieceSelected) then
 begin
 ChessPieceSelected := ChessPieceHover;
 ConfigureEffect(OldSelected);
 ConfigureEffect(ChessPieceSelected);
 end;
 Exit(true); // mouse click was handled
 end;
end;

As always, remember to compile and run the code to make sure it works OK!

19

The bad way to play chess

You will notice that MainViewport.TransformUnderMouse detects what is under

the mouse, but treating each chess piece as a box. So the detection is visibly not

accurate. To fix this, set PreciseCollisions to true on all the chess pieces. You

can do this easily by selecting all chess pieces in editor using Shift or Ctrl and then

toggling PreciseCollisions in the Object Inspector.

I decided to move the camera at this point too (to show both sides, black and white,

from a side view).

20

The bad way to play chess

5.2. Sidenote: Other ways to show a highlight

There are other ways to show the highlighted (or selected) chess piece.

• Dynamically changing the material color. Do this by

accessing an instance of TPhysicalMaterialNode within the

scene’s nodes (TCastleScene.RootNode) and changing the

TPhysicalMaterialNode.BaseColor . See e.g. engine example examples/
viewport_and_scenes/collisions/ that uses this.

• Dynamically enabling / disabling a shader effect. This means adding

TEffectNode and TEffectPartNode nodes to the scene and implementing

the effect using GLSL (OpenGL Shading Language). See https://castle-
engine.io/shaders about this.

• Adding a additional box that surrounds chosen object. The CGE editor itself uses this

technique to show highlighted / selected 3D objects. Use TDebugTransformBox
class to implement this easily.

If you are curious, hopefully the above information and examples will point you in the

right direction.

21

https://castle-engine.io/shaders
https://castle-engine.io/shaders

The bad way to play chess

5.3. Sidenote: Shadows

I decided to activate shadows at this point. Just set Shadows to true on the main

light source. Moreover, set RenderOptions.WholeSceneManifold to true at

the chess pieces. This should make everything cast nice shadows. The shadows are

dynamic which means that they will properly change when we will move the chess

pieces.

See https://castle-engine.io/shadow_volumes for more information about shadows in

Castle Game Engine.

6. Let user choose the angle and strength to flick the chess

piece

Once the user has picked a chess piece, we want to allow configuring the direction and

strength with which to flick the chosen object. We already know that "flicking" the chess

piece technically means "applying a physics force to the rigid body of a chosen chess

piece". We have almost everything we need, but we need to allow user to choose the

direction and strength of this force.

6.1. Designing a 3D arrow

To visualize the desired force we will use a simple 3D arrow model, that will be rotated

and scaled accordingly. While we could design such model in Blender or other 3D

22

https://castle-engine.io/shadow_volumes

The bad way to play chess

authoring software, in this case it’s easiest to just do it completely in the Castle Game

Engine editor. The arrow is a composition of two simple shapes: cone (for the arrow

tip) and a cylinder.

Moreover let’s design the arrow independently, as a separate design. The new design

will contain a hierarchy of components, with the root being TCastleTransform .

We will save it as a file force_gizmo.castle-transform in the project data
subdirectory. Then we will add it to the main design (gameviewmain.castle-user-
interface), and toggle the existence, rotation and scale of the visualized force.

Using a separate design file for the 3D arrow, while not strictly necessary in this case,

is a powerful technique. When something is saved as a separate design file, you can

reuse it freely, and instantiate it many times (at design-time, or by dynamically spawning

during the game run-time). This is e.g. how to have creatures in your game: 3D objects

that share common logic and that can be spawned whenever needed.

To start designing the arrow, choose editor menu item "Design # New Transform

(Empty Transform as Root)".

Underneath, add two components: TCastleCylinder and TCastleCone .

Adjust their Height , Radius (on cylinder), BottomRadius (on cone) and

Translation to form a nice 3D arrow.

Adjust their Color to something non-default to make things prettier. Remember

that the arrow will later be lit by the lights we have set up in the main design

23

The bad way to play chess

(gameviewmain.castle-user-interface), so it will probably be brighter than

what you observe now.

You can follow the values I chosen on the screenshots below, but really these are just

examples. Go ahead and create your own 3D arrow as you please.

Now comes a bit difficult part. We want to have an arrow that can easily rotate around

a dummy box (in the actual game, it will rotate around a chess piece). Ideally, an

arrow should also easily scale to visualize the force strength. I use the words easily

24

The bad way to play chess

to emphasize that we don’t want to only rotate it in the editor, but we will also have to

allow user to rotate it during the game. So the rotation and scale that are interesting to

us must be very easy to get and set from code.

To do this, first add a dummy box representing a chess piece. I called it

DebugBoxToBeHidden and set Size of the box to 2 3 2 to account for tall (large

Y axis) chess pieces. Later we will make the box hidden by setting its Exists property

to false .

Once you have a box, you want to add intermediate TCastleTransform
components to

1. rotate the arrow (cone and cylinder) to be horizontal

2. move the arrow away from the box

3. rotate the arrow around the box

4. scale the arrow.

There are multiple valid ways of achieving this. The key advise is to not hesitate

to make a nested composition, that is place TCastleTransform within another

TCastleTransform within another TCastleTransform and so on. Let each

TCastleTransform perform a single function. Take it step by step and you will get

to a valid solution (and there are really a number of possible ways to arrange this).

See my arrangement on the screenshots below. If you get stuck, just use the design

from our resulting project in https://github.com/castle-engine/bad-chess/ (in project/
version_2_with_code subdirectory).

25

https://github.com/castle-engine/bad-chess/

The bad way to play chess

The outcome of my design is that I know that from code, I can:

• Adjust Rotation property of the TransformForceAngle component to be a

simple rotation around the X axis. The angle of this rotation can be chosen by user

and effectively the arrow will orbit around the debug box (chess piece).

• Adjust Y of the Scale property of the TransformForceStrength component.

The amount of this scale can be chosen by user to visualize the strength.

Remember to set Exists of the DebugBoxToBeHidden component to false
once done.

6.2. Add the arrow to the main design

To test that it works, add the arrow design to the main design using the editor.

Save the design force_gizmo.castle-transform , open our main design in

gameviewmain.castle-user-interface , select the Items component inside

26

The bad way to play chess

MainViewport and drag-and-drop the file force_gizmo.castle-transform
(from the "Files" panel below) on the hierarchy.

The result should be that a new component called DesignForceGizmo1
is created and placed as a child of Items . The component class

is TCastleTransformDesign , which means that it’s an instance of

TCastleTransform loaded from another file with .castle-transform
extension. The URL property of this component should automatically be set to indicate

our force_gizmo.castle-transform file.

Rename this component to just DesignForceGizmo (up to you, but I think it makes

things clearer — we will only ever need one such gizmo). Moreover, change the

Exists property of this component to false because initially, we don’t want this

component to be visible or pickable by the mouse.

The screenshot below shows the state right before I set Exists to false .

6.3. Letting user control the arrow

We need to declare and initialize the fields that describe current angle and strength.

Add this to the private section of the TViewMain class:

TransformForceAngle, TransformForceStrength: TCastleTransform;
ForceAngle: Single;

27

The bad way to play chess

ForceStrength: Single;

Then let’s set some constants. You can declare them at the beginning of unit

GameViewMain implementation:

const
 MinStrength = 1;
 MaxStrength = 1000;

 MinStrengthScale = 1;
 MaxStrengthScale = 3;

 StrengthChangeSpeed = 30;
 AngleAChangeSpeed = 10;

Add to the uses clause new necessary units: Math , CastleUtils .

Finally add to the TViewMain.Start additional piece of code to initialize everything:

 TransformForceAngle :=
 DesignForceGizmo.DesignedComponent('TransformForceAngle')
 as TCastleTransform;
 TransformForceStrength :=
 DesignForceGizmo.DesignedComponent('TransformForceStrength')
 as TCastleTransform;
 ForceAngle := 0; // 0 is default value of Single field anyway
 TransformForceAngle.Rotation := Vector4(1, 0, 0, ForceAngle);
 ForceStrength := 10; // set some sensible initial value
 TransformForceStrength.Scale := Vector3(1,
 MapRange(ForceStrength, MinStrength, MaxStrength, MinStrengthScale,
 MaxStrengthScale),
 1);

Note that we initialize the components within our DesignForceGizmo design using

the DesignForceGizmo.DesignedComponent(…) call. This is necessary, as in

general you can have multiple instances of the design force_gizmo.castle-
transform placed in your view. So the published fields of the view cannot be

automatically associated with components in nested designs.

Moreover we synchronize Single fields ForceStrength and ForceAngle
with their counterpart TCastleTransform instances. Single in Pascal is a

simple floating-point number, which is super-easy to manipulate. We treat two

28

The bad way to play chess

TCastleTransform instances above as just a fancy way to visualize these numbers

as 3D rotation and scale.

You may want to lookup what the MapRange function does in Castle Game Engine

API reference. In short, it’s a comfortable way of doing a linear interpolation, converting

from one range to another.

Now that we have initialized everything, let’s actually show the DesignForceGizmo
when user selects a chess piece. We already have a code to select chess piece on

mouse click. Just extend it to show the DesignForceGizmo and reposition it at the

selected chess piece.

if Event.IsMouseButton(buttonLeft) then
begin
 OldSelected := ChessPieceSelected;
 if (ChessPieceHover <> nil) and
 (ChessPieceHover <> ChessPieceSelected) then
 begin
 ... // keep existing code

 // new lines:
 DesignForceGizmo.Exists := true;
 DesignForceGizmo.Translation :=
 ChessPieceSelected.Parent.WorldTranslation;
 end;
 Exit(true); // mouse click was handled
end;

Note: You may wonder about an alternative approach, where we don’t

reposition DesignForceGizmo , but instead dynamically change it’s parent, like

DesignForceGizmo.Parent := ChessPieceSelected.Parent . This would

work too, alas with some additional complications: the rotation of the selected

object, once we flick it, would rotate also the gizmo. This would make the

calculation of "desired flick direction" later more complicated. So I decided to go

with the simpler approach of just repositioning the DesignForceGizmo . If you

want to experiment with the alternative complicated approach, go ahead, one

solution would be to design DesignForceGizmo such that you can later do

TransformForceAngle.GetWorldView(WorldPos, WorldDir, WorldUp)
and use resulting WorldDir as a force direction.

But since we keep things simple… we’re almost done. You can run the game and see

that selecting a chess piece shows the arrow gizmo properly. It remains to allow user

29

The bad way to play chess

to change direction and strength. We can do this by observing the keys user presses in

the Update method. The code below allows to rotate the arrow (make it orbit around

the chess piece) using left and right arrow keys, and change force strength (scaling the

arrow) using up and down arrow keys. Add this code to your existing Update method:

procedure TViewMain.Update(const SecondsPassed: Single; var
 HandleInput: Boolean);
begin
 ... // keep existing code
 if Container.Pressed[keyArrowLeft] then
 ForceAngle := ForceAngle - SecondsPassed * AngleAChangeSpeed;
 if Container.Pressed[keyArrowRight] then
 ForceAngle := ForceAngle + SecondsPassed * AngleAChangeSpeed;
 if Container.Pressed[keyArrowUp] then
 ForceStrength := Min(MaxStrength, ForceStrength + SecondsPassed *
 StrengthChangeSpeed);
 if Container.Pressed[keyArrowDown] then
 ForceStrength := Max(MinStrength, ForceStrength - SecondsPassed *
 StrengthChangeSpeed);

 TransformForceAngle.Rotation := Vector4(1, 0, 0, ForceAngle);
 TransformForceStrength.Scale := Vector3(1,
 MapRange(ForceStrength, MinStrength, MaxStrength, MinStrengthScale,
 MaxStrengthScale),
 1);
end;

7. Flick that chess piece!

Looks like we have all the knowledge we need.

• We know how to flick the chess piece,

• we know which chess piece to flick,

• we know the direction and strength of the flick.

You can consult the code we did a few sections before, in the exercise "Push the

chess piece using physics". Our new code will be similar. Add it to the Press method

implementation:

function TViewMain.Press(const Event: TInputPressRelease): Boolean;

30

The bad way to play chess

var
 ... // keep existing variables used by other inputs
 ChessPieceSelectedScene: TCastleScene;
 ForceDirection: TVector3;
begin
 Result := inherited;
 if Result then Exit; // allow the ancestor to handle keys

 ... // keep existing code handling other inputs

 if Event.IsKey(keyEnter) and (ChessPieceSelected <> nil) then
 begin
 ChessPieceSelectedScene := ChessPieceSelected.Parent as TCastleScene;
 MyBody := ChessPieceSelectedScene.FindBehavior(TCastleRigidBody) as
 TCastleRigidBody;
 ForceDirection := RotatePointAroundAxis(
 Vector4(0, 1, 0, ForceAngle), Vector3(-1, 0, 0));
 MyBody.ApplyImpulse(
 ForceDirection * ForceStrength,
 ChessPieceSelectedScene.WorldTranslation);
 // unselect after flicking; not strictly necessary, but looks better
 ChessPieceSelected := nil;
 DesignForceGizmo.Exists := false;
 Exit(true); // input was handled
 end;
end;

Depending on how you designed the force_gizmo.castle-transform design,

you may need to adjust the ForceDirection calculation, in particular the 2nd

parameter to RotatePointAroundAxis which is a direction used when angle is

zero. There’s nothing magic about our value Vector3(-1, 0, 0) , it just follows

our force_gizmo.castle-transform design.

Run the game and see that you can now flick the chess pieces!

• Select the chess piece by clicking with mouse.

• Rotate the force by left and right arrow keys.

• Change the force strength by up and down arrow keys.

• Flick the chess piece by pressing Enter.

• Repeat :)

31

The bad way to play chess

8. Conclusion and future ideas

Invite a friend to play with you. Just take turns using the mouse to flick your chess

pieces and have fun :)

I am sure you can invent now multiple ways to make this better.

• Maybe each player should be able to flick only its own chess pieces? We

already know which chess piece is black or white (the Black boolean field in

TChessPieceBehavior), though we didn’t use it for anything above. You should

track which player flicked the object last (black or white), and only allow to choose

the opposite side next time.

• Maybe you want to display some user interface, like a label, to indicate whose turn

is it? Just drop a TCastleLabel component on view, and change the label’s

Caption whenever you want.

• Maybe you want to show the current force angle and strength — either as numbers,

or as some colorful bars? Use TCastleRectangleColor for a trivial rectangle

with optional border and optionally filled with a color.

• Maybe you want to implement a proper chess game? Sure, just track in code all the

chess pieces and the chessboard tiles — what is where. Then add a logic that allows

player to select which piece and where should move. Add some validation. Add

playing with a computer opponent if you wish — there are standardized protocols to

32

The bad way to play chess

communicate with "chess engines" so you don’t need to implement your own chess

AI from scratch.

• Maybe you want to use networking? You can use a number of networking solutions

(any Pascal library) together with Castle Game Engine. See https://castle-engine.io/

multi_player . We have used the engine with Indy and RNL (Realtime Network

Library). In the future we plan to integrate the engine with Nakama, an open-source

server and client framework for multi-player games.

• Maybe you want to deploy this game to other platforms, in particular mobile? Go

ahead. The code we wrote above is already cross-platform and can be compiled

using Castle Game Engine to any Android or iOS. Our build tool does everything for

you, you get a ready APK, AAB or IPA file to install on your phone. See the engine

documentation on https://castle-engine.io/android .

Although keyboard inputs will not work on mobile. You need to invent and implement

a new user interface to rotate the force, change the strength, and actually throw

the chess piece. It is simplest to just show clickable buttons to perform the relevant

actions. The TCastleButton class of the engine is a button with a freely

customizable look.

If you want to learn more about the engine, read the documentation on https://castle-

engine.io/ and join our community on forum and Discord: https://castle-engine.io/

talk.php . Last but not least, if you like this article and the engine, we will appreciate

if you support us on Patreon https://www.patreon.com/castleengine . We really count

on your support.

Finally, above all, have fun! Creating games is a wild process and experimenting with

"what feels good" is the right way to do it. I hope you will enjoy it.

33

https://castle-engine.io/multi_player
https://castle-engine.io/multi_player
https://castle-engine.io/android
https://castle-engine.io/
https://castle-engine.io/
https://castle-engine.io/talk.php
https://castle-engine.io/talk.php
https://www.patreon.com/castleengine

	The bad way to play chess
	Table of Contents
	1. Introduction
	2. Coding the game
	3. Exercises
	3.1. Handle a key press to change position of an object
	3.2. Push the chess piece using physics

	4. Make code aware "what is a chess piece" using behaviors
	5. Selecting 3D object using the mouse
	5.1. Highlight the chess piece under mouse and allow selecting it
	5.2. Sidenote: Other ways to show a highlight
	5.3. Sidenote: Shadows

	6. Let user choose the angle and strength to flick the chess piece
	6.1. Designing a 3D arrow
	6.2. Add the arrow to the main design
	6.3. Letting user control the arrow

	7. Flick that chess piece!
	8. Conclusion and future ideas

