
Compositing Shaders in X3D

Michalis Kamburelis

Ph.D. Thesis

Institute of Computer Science
University of Wrocław

Wrocław, 2011-2022



Compositing Shaders in X3D
Michalis Kamburelis
Copyright © 2011, 2022 Michalis Kamburelis

This documentation is open-source and we welcome pull requests to improve it. [https://github.
com/castle-engine/cge-documentation/]

https://github.com/castle-engine/cge-documentation/
https://github.com/castle-engine/cge-documentation/
https://github.com/castle-engine/cge-documentation/


Table of Contents
Abstract ...................................................................................................................................... v
1. Overview ................................................................................................................................ 1
2. What is X3D? ........................................................................................................................ 3
3. Shaders and X3D ................................................................................................................... 5
4. Motivation and previous work ................................................................................................. 8
5. Extending the shaders with plugs .......................................................................................... 10

5.1. Effect node ................................................................................................................ 11
5.2. Effects for particular shapes ........................................................................................ 12
5.3. Effects for a group of nodes ....................................................................................... 13
5.4. Light sources effects .................................................................................................. 14
5.5. Texture effects ........................................................................................................... 15

5.5.1. Procedural textures .......................................................................................... 15
5.5.2. Example of a procedural texture ....................................................................... 16
5.5.3. When to use the ShaderTexture ........................................................................ 17
5.5.4. Texture resolution does not matter .................................................................... 18

6. Extensions for geometry shaders ........................................................................................... 19
6.1. Robust geometry shaders ............................................................................................ 19
6.2. Effects that cooperate with geometry shaders ............................................................... 21

7. Defining custom plugs .......................................................................................................... 22
7.1. Forward declarations .................................................................................................. 22
7.2. Invalid shader code .................................................................................................... 23

8. Examples .............................................................................................................................. 24
9. Implementation ..................................................................................................................... 27

9.1. Outline of the implementation .................................................................................... 27
9.1.1. Helper functions .............................................................................................. 27
9.1.2. Final algorithm ................................................................................................ 29

9.2. Correct shadows from multiple light sources ............................................................... 32
9.3. Pool of shaders .......................................................................................................... 33
9.4. Speed ........................................................................................................................ 33
9.5. Inspect shaders generated by our implementation ......................................................... 33

10. Conclusion .......................................................................................................................... 35
A. Reference of available plugs ................................................................................................. 36

A.1. Vertex shader plugs ................................................................................................... 36
A.2. Fragment shader plugs ............................................................................................... 36
A.3. Lights plugs (internal; at vertex or fragment shader) .................................................... 38
A.4. Geometry shader plugs .............................................................................................. 40

References ................................................................................................................................ 41

iii



List of Figures
1.1. Japanese shrine model with more and more effects applied .................................................... 2
5.1. Toon and Fresnel effects combined ..................................................................................... 12
5.2. Volumetric fog with animated density ................................................................................. 13
5.3. Textured spot light with shadow ......................................................................................... 14
5.4. Cellular texturing ............................................................................................................... 17
5.5. ShaderTexture doing an edge detection operation on a normal ImageTexture .......................... 18
5.6. Texture effects are not concerned with the texture resolution ................................................ 18
6.1. Converting mesh into a dense line and point sets by geometry shaders .................................. 19
8.1. ElevationGrid with 3 textures mixed (based on the point height) inside the shader .................. 24
8.2. 3D and 2D smooth noise on GPU, wrapped in a ShaderTexture ............................................ 24
8.3. Water using our effects framework ...................................................................................... 25
8.4. Flowers bending under the wind, transformed on GPU in object space .................................. 26

iv



Abstract
We present a new approach for implementing effects using the GPU shading languages. Our effects
seamlessly cooperate with each other and with the shaders used internally by the 3D application. Thus
the effects are reusable, work in various combinations and under all lighting and texture conditions. This
makes the GPU shaders more useful for 3D content authors.

Our approach may also be used to integrate internal effects inside a 3D renderer. Modern renderers need
to combine many effects, like lighting, bump mapping and shadow maps. As such, it becomes important
to develop all these internal effects easily and separately.

We have designed our effects to fit naturally in 3D scene graph formats, in particular we present a number
of extensions to the X3D standard. Our extensions nicely integrate shader effects with X3D concepts
like shapes, groups, light sources and textures.
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Chapter 1. Overview
X3D [X3D] is an open standard for representing interactive 3D models, with many advanced graphic
features. Chapter 2, What is X3D? describes X3D in more detail.

Programmable shaders component [X3D Shaders] (part of the X3D standard) defines how shaders can
be assigned to visible shapes. Shaders are programs usually executed on the graphic processor unit
(GPU). They control the per-vertex and per-pixel processing, for example summing the lights contribu-
tion and mixing the texture colors. The authors can create and assign shaders to shapes, which makes
a myriad of interesting graphic effects possible in X3D models. Chapter 3, Shaders and X3D describes
shaders and the standard way to use them with X3D.

The shaders designed using the standard nodes replace the normal rendering functionality, not enhance
it. This reflects the underlying API, like OpenGL or Direct3D. The 3D libraries, in turn, follow the
hardware idea that shader code should be a complete and optimized program designed for rendering a
particular shape.

We argue that a different approach is needed in many situations. Authors usually would like to keep
the normal rendering features working and only add their own effects. The 3D renderer already has an
extensive internal shaders system and the authors want to depend on these internal shaders to do the
common job.

As an example, consider this simplified lighting equation:

Different effects want to change various parts of this equation, without touching the others. For example,
the shadow function may check a shadow map pixel, or (when shadow map is not available) always
return 1. The normal function may take the vector straight from the geometry description, or calculate
it using a texture value (classic bump mapping). See Figure 1.1, “Japanese shrine model with more
and more effects applied ”. The light_color function may use different lighting models (Phong, Ward,
Cook-Torrance and so on). Sometimes it makes sense to change these functions for all the light sources
and sometimes only a specific light source should behave differently. Our approach allows you to do
everything mentioned here.

We present a system for creating effects by essentially compositing pieces of a shader code. All the
effects defined this way effortlessly cooperate and can be combined with each other and with application
internal shaders. This makes shader programs:

1. Much easier to create. We can jump straight into the implementation of our imagined algorithm in
the shader. We are only interested in modifying the relevant shader calculation parameter. We do not
need to care about the rest of the shader.

2. Much more powerful. Our effect immediately cooperates with absolutely every normal feature of
X3D rendering. This makes the implemented effect useful for a wide range of real uses, not only for a
particular situation or a particular model (as it often happens with specialized shader code). All X3D
light sources, textures, even other shader effects, are correctly applied.

It is important to note that we keep the full power of a chosen GPU shading language. We deliberately
do not try to invent here a new language, or wrap existing language in some cumbersome limitations.
This is most flexible for authors, and it also allows an easy implementation — there is no need for any
complex shading language processing inside the application.
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Overview

Figure 1.1. Japanese shrine model with more and more effects applied. The model
is based on http://opengameart.org/content/shrine-shinto-japan.

No effects. Phong shading (per-pixel lighting).

Bump mapping. 1st shadow map.

2nd shadow map. Both shadow maps.
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Chapter 2. What is X3D?
X3D [X3D] is a language to describe 3D worlds. The precise specification of the language is open to
everyone. In effect, many applications can handle X3D and cooperate with each other. For example,
you can create an X3D file using any popular 3D modeller (like Blender) and then load it into any X3D
browser (like our view3dscene, see [Castle Game Engine]).

Many common 3D features, like triangle meshes with materials and textures, are easy to express. Yet
the whole X3D standard is quite large, including advanced 3D concepts like NURBS, cube mapping,
multi-texturing, particle effects, skinned humanoid animation, spatial sound, and physics.

The scene is represented as a graph of nodes. In the simple cases, the scene is just a tree of nodes. In
a general case, it can be a directed graph of nodes, with possible cycles. The X3D specification lists
the available node types and their fields. It is also possible to define new full-featured node types using
prototypes.

An example of a simple X3D file in the “classic” encoding follows. You can save it as a file named
test.x3dv and open with any X3D browser.

#X3D V3.2 utf8
PROFILE Interchange
Shape {
  geometry Sphere { radius 2 }
}

Example below shows the same X3D content encoded using the XML format. Note that we omitted
DTD and XML schema declarations for brevity. Again, you can open this file with any X3D browser
(be sure to save it with an .x3d extension).

<?xml version="1.0" encoding="UTF-8"?>
<X3D version="3.2" profile="Interchange">
  <Scene>
    <Shape>
      <Sphere radius="2" />
    </Shape>
  </Scene>
</X3D>

To enable basic animation and interactive behavior, X3D introduces the concept of events and routes.
Many nodes have the ability to send events, notifying about something. There are even special nodes
called sensors with the sole purpose of sending events when something happens. For example mouse
sensors, that report user clicking and dragging on the scene. Independently, many nodes can also receive
events, which allows to instruct the node to do something (for example, start the animation). The X3D
author can declare routes that connect given node's output event (a socket used to send an event) to
another node's input event (a socket used to receive an event). For example, “open a door when the
handle is pressed”.

Below is an example of a simple interactive animation. When you click on a sphere, the TimeSen-
sor starts ticking, which in turn makes the PositionInterpolator produce 3D positions with
increasing Y value. The positions are then used to move the sphere up.

#X3D V3.2 utf8
PROFILE Interchange
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What is X3D?

DEF MyTransform Transform {
  children Shape {
    geometry Sphere { }
  }
}

DEF MyTouchSensor TouchSensor { }

DEF MyTimeSensor TimeSensor { }

DEF MyInterpolator PositionInterpolator {
  key      [ 0      1     ]
  keyValue [ 0 0 0  0 1 0 ]
}

ROUTE MyTouchSensor.touchTime TO MyTimeSensor.startTime
ROUTE MyTimeSensor.fraction_changed TO MyInterpolator.set_fraction
ROUTE MyInterpolator.value_changed TO MyTransform.set_translation

4



Chapter 3. Shaders and X3D
Graphic processing unit (GPU) is given a set of 3D points (vertexes) connected into triangles. For each
vertex, some work should be performed, at least to transform it from an object space into the clip space.
This is where we move and rotate our objects, and apply perspective projection. Vertex shaders allow
to replace this per-vertex work with a custom program written in a special shading language. When the
vertexes are processed, the GPU performs rasterization, determining which screen pixels are actually
covered by the triangles. Then each pixel is drawn, which involves calculating the actual pixel color.
For example we can mix color from the lighting calculations with the texture color. Fragment (pixel)
shaders allow to replace this per-pixel work with a custom program.

An optional geometry shader may also change the primitives between the vertex and fragment process-
ing. We will talk about geometry shaders more in Chapter 6, Extensions for geometry shaders.

The most popular real-time shading languages right now are OpenGL GLSL [GLSL], NVidia Cg [Cg]
and Direct 3D HLSL [HLSL]. They are used for the same purposes and offer practically the same pos-
sibilities. X3D, and our extensions for compositing shaders described in this paper, support all three of
these languages.

The current implementation of our extensions supports only the GLSL (OpenGL Shading Language),
which is probably the most natural to use in an engine based on OpenGL. As such, most of our examples
in this paper will show GLSL.

Example GLSL vertex shader and accompanying fragment shader:

/* vertex shader */
void main(void)
{
  /* pass unchanged texture coordinate to the fragment shader */
  gl_TexCoord[0] = gl_MultiTexCoord0;
  /* calculate vertex position in clip space */
  gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

/* fragment shader */
/* myTexture contents are loaded outside of the shader program,
   by appropriate OpenGL calls. */
uniform sampler2D myTexture;
void main(void)
{
  /* take the texture color at given coordinates, multiply by 2,
     use it as the fragment (pixel) color */
  gl_FragColor = texture2D(myTexture, gl_TexCoord[0].st) * 2.0;
}

The shader source code should be processed and passed to the rendering 3D library, like OpenGL, that
in turn will pass it to the hardware (GPU). The complexity of this operation (and the differences between
various shading languages at this step) can be fortunately completely ignored by us. That is because
standard X3D Programmable shaders component [X3D Shaders] gives us a simple way to attach a
shader source code to a 3D shape. The X3D browser will do all the necessary job of handling the shader
to the underlying libraries and hardware.
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Shaders and X3D

A simple working example showing X3D with GLSL shader code:

#X3D V3.2 utf8
PROFILE Interchange
Shape {
  appearance Appearance {
    shaders ComposedShader {
      language "GLSL"
      parts ShaderPart {
        type "FRAGMENT"
        url "data:text/plain,
          void main(void)
          {
            /* just draw the pixel red */
            gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
          }"
      }
    }
  }
  geometry Sphere { radius 2 }
}

A little longer example, showing X3D with the previous shader code (multiplying texture by 2):

#X3D V3.2 utf8
PROFILE Interchange
Shape {
  appearance Appearance {
    shaders ComposedShader {
      language "GLSL"
      inputOutput SFNode myTexture ImageTexture { url "test_texture.png" }
      parts [
        ShaderPart {
          type "VERTEX"
          url "data:text/plain,
            void main(void)
            {
              gl_TexCoord[0] = gl_MultiTexCoord0;
              gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
            }"
        }
        ShaderPart {
          type "FRAGMENT"
          url "data:text/plain,
            uniform sampler2D myTexture;
            void main(void)
            {
              gl_FragColor = texture2D(myTexture, gl_TexCoord[0].st) * 2.0;
            }"
        }
      ]
    }
  }
  geometry Sphere { radius 2 }
}
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Shaders and X3D

The shader code provided this way replaces the standard calculations done by the GPU. This means that
all the lighting and texturing effects, if needed, have to be reimplemented from scratch in our shader.
There is no way to combine our shader with standard rendering features and it is impossible to automat-
ically combine two shader sources. This drawback reflects the design of the hardware. And the whole
work presented in this paper strives to overcome this problem.
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Chapter 4. Motivation and previous
work
The popular real-time shading languages (OpenGL GLSL [GLSL], NVidia Cg [Cg] and Direct 3D HLSL
[HLSL]) do not provide a ready solution for connecting shaders from independent sources. The CgFX
and HLSL .fx files encapsulate shading language code in techniques (for various graphic card capa-
bilities) and within a single technique specify operations for each rendering pass. In neither case can we
simply connect multiple shader source code files and expect the result to be a valid program.

The X3D Programmable shaders component [X3D Shaders] makes the three shading languages men-
tioned above available to X3D authors. Complete shader code may be assigned to specific shapes. Al-
though it does not offer any way of compositing shader effects, this component is still an important base
for our work. It defines how to comfortably keep shader code inside X3D nodes. It also shows how to
pass uniform values (including textures) to the shaders.

An old method to combine effects, used even before the shading languages, is a multi-pass rendering.
Each rendering pass adds or multiplies to the buffer contents, adding a layer with desired effect. How-
ever, this is expensive — in each pass we usually have to repeat some work, at least transforming and
clipping the geometry. It is also not flexible — we can only modify the complete result of the previous
pass. In our work, we want to allow a single rendering pass to be as powerful as it can.

Arranging shader functions in a pipeline has similar disadvantages as multi-pass rendering, except there's
no speed penalty in this case.

Common approach for writing a flexible shader code is to create a library of functions and allow the
author to choose and compose them in a final shader to achieve the desired look. But this approach is
very limited, as we cannot modify a particular calculation part without replicating the algorithm outside
of this calculation. For example, if we want to scale the light contribution by a shadow function, we will
have to also replicate the code iterating over the light sources.

Sh (http://libsh.org/, [Sh]) allows writing shader code (that can run on GPU) directly inside a C++
program. For this, Sh extends the C++ language (through C++ operator overloading and macros tricks).
It allows an excellent integration between C++ code and shaders, hiding the ugly details of passing
variables between normal code (that executes on CPU) and shader code (that usually executes on GPU).
We can use object-oriented concepts to create a general shader that can later be extended, for example by
overriding virtual methods. However, this is a solution closely coupled with C++. It's suitable if we have
a 3D engine in C++, we want to use it in our own C++ program and extend its shaders. Our solution is
simpler, treating shader effects as part of the 3D content and can be integrated into a renderer regardless
of its programming language. We do not need a C++ compiler to generate a final GPU shader and users
do not need to be familiar with C++.

OGRE (http://www.ogre3d.org/), an open-source 3D engine written in C++, has a system for adding
shader extensions (see [OGRE Shader]). Its idea is similar to our system (enhance the built-in shaders
with our own effects), however the whole job of combining a shader is done by operating on particular
shader by C++ code. The developer has to code the logic deciding which shaders are extended and
most of the specification about how the extension is called is done in the C++ code. This has the nice
advantage of being able to encapsulate some fixed-function features as well, however the whole system
must be carefully controlled by the C++ code. In our approach, we allow the authors to write direct
shading language code quickly and the integration is built inside appropriate X3D nodes.

AnySL [AnySL] allows to integrate internal renderer shaders with user shaders, by introducing a new
shader language.

8
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Motivation and previous work

Spark [Spark] is a recent work presenting a new language to develop composable shaders for GPU.

In this work, we deliberately decided not to introduce a new shading language. One of the problems
with introducing a new language is that it is “yet another language to learn” for developers and users.
For developers of 3D rendering applications, there's an additional effort of integrating the new language
with a renderer, which often is not a trivial task. This creates a practical problem for new languages —
because they are not popular, it's even harder for them to become popular. Of course, a new language
has also the possibility to introduce new features, and “win” developers this way. But we think that
existing shading languages, like GLSL, are already comfortable for a lot of practical purposes. That's, in a
nutshell, our motivation behind extending an existing shading language, instead of inventing a new one.

[X3D DeclarativeShader] presents a declarative approach to an advanced shader in X3D. However, it
only allows a fixed set of functionality, kind of an advanced and enhanced material. It does not expose
any shader functionality to the authors. It merely allows the authors to use some advanced algorithms
that in practice will be usually implemented by shaders inside the application.

[X3D Volume] proposes a new X3D component for rendering volumetric data (coming from 3D tex-
tures). It is interesting in relation to our work, as it allows to compose various rendering styles for vi-
sualizing volumetric data. Many styles of rendering are predefined (all the nodes descending from the
X3DComposableVolumeRenderStyleNode) and they can be combined together by the Com-
posedVolumeStyle node. The effects introduced in our work could serve as a low-level implemen-
tation for such rendering styles, utilizing GPU shading languages. Each rendering style could be defined
as a prototype that expands into our Effect node, overriding some plug receiving data about the 3D
volume, add adding the necessary visualization.

At the end, we would like to mention a solution from a completely different domain, that is surprisingly
similar to ours in some ways. Drupal (http://drupal.org/), an open-source CMS system written in PHP,
has a very nice system of modules. Each module can extend the functionality of the base system (or
other module) by implementing a hook, which is just a normal PHP function with a special name and
appropriate set of parameters. Modules can also define their own hooks (for use by other modules) and
invoke them when appropriate. This creates a system where it's trivially easy to define new hooks and to
use existing hooks. Many modules can implement the same hook and cooperate without any problems.
The whole hook system is defined completely in PHP, as it's a scripting language and we can query
the list of loaded functions by name, and call function by its name. Drupal approach is quite similar
to our core idea of combining effects. Our effects are similar to Drupal's modules and our “plugs” are
analogous to Drupal hooks.

9
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Chapter 5. Extending the shaders
with plugs
The core idea of our approach is that the base shader defines points where calls to user-defined functions
may be inserted. We call these places plugs, as they act like sockets where logic may be added. Each
plug has a name and a given set of parameters. The effects can use special function names, starting with
PLUG_ and followed by the plug name. These declarations will be found and the renderer will insert
appropriate calls to them from the base shader.

A trivial example of an effect that makes colors two times brighter is below. This is a complete X3D file,
so you can save it as test.x3dv and open with any tool supporting our extensions, like view3d-
scene.

#X3D V3.2 utf8
PROFILE Interchange
Shape {
  appearance Appearance {
    material Material { }
    effects Effect {
      language "GLSL"
      parts EffectPart {
        type "FRAGMENT"
        url "data:text/plain,
        void PLUG_fragment_modify(
          inout vec4 fragment_color)
        {
          fragment_color.rgb *= 2.0;
        }"
      }
    }
  }
  geometry Sphere { }
}

Our extensions to X3D are marked with the bold font in the example above. The GLSL code inside our
extensions is marked with the italic font. The special GLSL function name PLUG_fragment_modify
indicates that we use the fragment_modify plug. This particular plug is called after calculating
everything else for this pixel (textures, lighting) and allows to intuitively “modify the final pixel color”.
fragment_color is an “inout” parameter, by modifying it we modify the color that will be displayed
on the screen.

A reference of all the plugs available in our implementation is at the end of this paper, see Appendix A,
Reference of available plugs. For each plug, like this PLUG_fragment_modify, we define a list of
parameters and when it is called.

Many usage scenarios are possible:

1. The Effect nodes may use plug names defined inside the renderer internal shaders. This is the most
usual case. It allows the authors to extend or override a particular shading parameter.

2. The Effect nodes may also use the plug names defined in the previous Effect nodes on the same
shape. It is trivially easy (just add a “magic” comment) to define plugs in your own shader code. This
way your own effects can be customized.

10



Extending the shaders with plugs

3. Inside the renderer implementation, the same approach can be used to implement some internal ef-
fects. We have reimplemented many internal effects of our engine, like the fog, shadow maps (see
our shadow mapping extensions for X3D [X3D Shadow Maps]) and the bump mapping to use our
“plugs” approach. This made their implementation very clean, short and nicely separated from each
other. It also proves that the authors have the power to implement similar effects easily by themselves.

Actually, there are even more possibilities. We have been talking above about the “renderer internal
shaders”, but the truth is a little more flexible. When you place a standard shader node (like a Com-
posedShader node for GLSL shaders) on the Appearance.shaders list, then it replaces the in-
ternal renderer shaders. If you define the same (or compatible) plugs inside your shader, then the internal
renderer effects are even added to your own shader. Of course user effects are added to your shader too.
This way even the standard X3D shader nodes become more flexible. Note that if you do not define
any plugs inside your ComposedShader node, it continues to function as before — no effects will
be added.

5.1. Effect node
New Effect node holds information about the source code and uniform values specific to a given
effect. The node specification below follows the style of the X3D specification [X3D].

Effect : X3DChildNode

SFString [] language ""
  # Language like "GLSL", "CG", "HLSL".
  # This effect will be used
  # only when the base renderer shader
  # uses the same language.

SFBool [in,out] enabled TRUE
  # Easily turn on/off the effect.
  # You could also remove/add the node
  # from the scene, but often toggling
  # this field is easier for scripts.

MFNode [] parts [] # EffectPart
  # Source code of the effect.

# A number of uniform values may also be
# declared inside this node.

Inside the Effect node a number of uniform values may be defined, passing any X3D value to the
shader. Examples include passing current world time or a particular texture to the shader. Uniform val-
ues are declared exactly like described in the standard X3D Programmable shaders component [X3D
Shaders].

The effect source code is split into a number of parts:

EffectPart : X3DNode, X3DUrlObject

SFString [] type "VERTEX"
  # Like ShaderPart.type:
  # allowed values are
  # VERTEX | GEOMETRY | FRAGMENT.

MFString [in,out] url []

11



Extending the shaders with plugs

  # The source code, like ShaderPart.url.
  # May come from an external file (url),
  # or inline (following "data:text/plain,").
  # In XML encoding, may also be inlined in CDATA.

Inside the effect part source code, the functions that enhance standard shaders behavior are recognized by
names starting with PLUG_. Of course other functions can also be defined and used. Uniform variables
can be passed to the effect, also varying variables can be passed between the vertex and fragment parts,
just like with standard shader nodes.

In a single EffectPart node, many PLUG_ functions may be declared. However, all plug functions
must be declared in the appropriate effect type. For example, the fragment_modify plug cannot be
used within a VERTEX shader. If the effect requires some processing per-vertex and some per-fragment,
it is necessary to use two EffectPart nodes, with different types. This allows to implement our
system for shading languages with separate namespaces for vertex and fragment parts (like GLSL). A
single part may declare many variables and functions, but it must be completely contained within a
given shader type.

Note that it is completely reasonable to have an EffectPart node with source code that does not de-
fine any PLUG_xxx functions. Such EffectPart node may be useful for defining shading language
utility functions, used by other effect parts.

For shading languages that have separate compilation units (like the OpenGL Shading Language) the
implementation may choose to place each effect part in such separate unit. This forces the shader code
to be cleaner, as you cannot use undeclared functions and variables from other parts. It also allows for
cleaner error detection (parsing errors will be detected inside the given unit).

5.2. Effects for particular shapes
There are various places where an Effect node may be used. To apply an effect on a given shape, it
can be placed on the new Appearance.effects list:

Appearance

MFNode [] effects [] # Effect

All the effects on this list (with suitable language) will be used. This allows authors to define a library
of independent shader effects and then trivially pick desired effects for each particular shape. Simply
placing two effects on the Appearance.effects list makes them cooperate correctly.

Figure 5.1. Toon and Fresnel effects combined
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Extending the shaders with plugs

Note that all introduced nodes benefit from X3D mechanism to reuse the nodes by reference (the DEF
and USE keywords). Reusing the Effect nodes is most natural and allows to combine existing effects
in any desired way. Reusing the EffectPart nodes is also useful, when some effects would like to
share a particular piece of code. For example, the same EffectPart node, with a library of useful
shading language functions, may be used for many effects.

5.3. Effects for a group of nodes
The Effect node is a descendant of the abstract X3DChildNode. As such it can be placed directly
within X3D grouping nodes like Group, Transform and at the top level of the X3D file. Such effect
will apply to all the shapes within the given group. The scope rules follow the X3D conventions for
other nodes, like pointing device sensor nodes and LocalFog.

The LocalFog example is worth emphasizing. Using our system, an X3D viewer can implement the
LocalFog node as a prototype that expands to our Effect node. This results in a 100% correct and
easy implementation of the standard LocalFog node.

As one of the demos, we have implemented a realistic animated volumetric fog, where the fog density is
stored in a 3D smooth noise texture (idea from [Volumetric Fog]). In a fragment shader, the 3D texture
is sampled along the line between the camera and pixel position in the 3D space. This makes a very
convincing effect of a dense fog. The Effect node with appropriate shader code is placed at the top
level of the X3D file, so it simply works for all shapes. See Figure 5.2, “Volumetric fog with animated
density”.

Figure 5.2. Volumetric fog with animated density

No fog. No lighting. Note that the fog is as-
sumed to have its own ambient lighting,
so it colors the image even in this case.

Lights and fog.
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Extending the shaders with plugs

5.4. Light sources effects
The nice feature of our system is that effects can be attached to various types of objects, not just shapes.
For example a particular light source may have a shader effect assigned. This allows to modify the
contribution of a given light. For example the spot light shape can be modified, possibly based on some
texture information (see Figure 5.3, “Textured spot light with shadow”). Or a different lighting model
may be implemented, like anisotropic Ward or Cook-Torrance. To make this possible, the effects
field is added to every light node:

X3DLightNode

MFNode [] effects [] # Effect

Figure 5.3. Textured spot light with shadow

An example below demonstrates how light effects are specified inside an X3D. The code makes a spot
light with an exponential drop-off, similar to traditional OpenGL fixed-function spot lights. Such code
can replace (or multiply with) the standard X3D concept of the linear drop-off for spot lights.

The customization is done by overriding the PLUG_light_scale. Remember that all plugs available
in our implementation are documented in Appendix A, Reference of available plugs.

SpotLight {
  effects Effect { language "GLSL"
    parts EffectPart { type "FRAGMENT"
      url "data:text/plain,
        uniform vec3 castle_LightSource0SpotDirection;

        void PLUG_light_scale(inout float light_scale,
          const in vec3 normal_eye,
          const in vec3 light_dir)
        {
          light_scale *= pow(dot(normalize(
            castle_LightSource0SpotDirection), -light_dir), 10.0) * 2.0;
        }"
    } } } 
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5.5. Texture effects
Just like the light sources, also each texture node may define its own effects:

X3DTextureNode

MFNode [] effects [] # Effect

X3DTextureNode is an ancestor for all the standard texture nodes, like the ImageTexture. This
allows to modify any X3D texture by shader effects. A plug texture_color may be used to change
the texture color, taking into account the current texture coordinates and other information.

5.5.1. Procedural textures
A new X3D node ShaderTexture is available for creating procedural textures using the GPU shad-
ing languages. The texture contents are not stored anywhere (not even on GPU) and the renderer does
not manage any texture resources. From a GPU point of view, there is no texture. There is only a shader
function that generates colors based on some vectors. By wrapping such function inside the Shader-
Texture node, it can be treated exactly like other textures in the scene. In particular, texture coordi-
nates (explicit or generated) can be comfortably provided for the procedural texture. Effectively, it be-
haves like a normal texture node, with all the related X3D features.

The new texture node specification:

ShaderTexture : X3DTextureNode

MFNode [] effects [] # Effect

SFString [] defaultTexCoord "BOUNDS2D"
  # ["BOUNDS2D"|"BOUNDS3D"]

Actually, the effects field is already defined in the base X3DTextureNode class mentioned pre-
viously. It is repeated here only for completeness.

An effect overriding the texture_color plug should be included, otherwise texture colors are un-
defined. Our implementation sets the default texture color to pink (RGB(1, 0, 1)), so it stands out, re-
minding author to override it.

The texture coordinates, or the algorithm to generate them, can be explicitly specified, just like for
any other texture in X3D. This is done by placing any X3DTextureCoordinateNode node inside
the geometry texCoord field. Both explicit texture coordinate lists (TextureCoordinate, Tex-
tureCoordinate3D, TextureCoordinate4D) as well as the coordinate generator nodes (like
TextureCoordinateGenerator and ProjectedTextureCoordinate) are allowed. Note
that projective texture mapping by the ProjectedTextureCoordinate is also our X3D exten-
sion, see [X3D Shadow Maps].

When the texture coordinates are not given, the defaultTexCoord field determines how they are
generated:

1. "BOUNDS2D" generates 2D texture coordinates, adapting to the two largest bounding box sizes. The
precise behavior of "BOUNDS2D" follows the X3D IndexedFaceSet specification.

This is most comfortable when the texture color depends only on the XY components of the texture
coordinate. The 3rd texture coordinate component is always 0, and the 4th component is always 1.
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2. "BOUNDS3D" generates 3D texture coordinates. The texture coordinates are adapted to all three
bounding box sizes, precisely following X3D specification section "Texture coordinate generation
for primitive objects" of the Texturing3D component.

This is most suitable for true 3D textures. The 4th texture coordinate component can be ignored. Or
the 4D vector may be treated as homogeneous, as "BOUNDS3D" will always set the 4th component
to 1.

The "BOUNDS*" names are consistent with another extension of our engine. We allow the same values
to be used in the TextureCoordinateGenerator.mode field. See [X3D TexCoord Bounds].

In the end, the idea is that using a ShaderTexture should be as comfortable as any other texture node.

5.5.2. Example of a procedural texture
As an example, we present an outline of a procedural texture code using the cellular texturing idea.
This is a nice approach to computing segmented textures, resembling various combinations of Voronoi
diagrams. We override the PLUG_texture_color to calculate a feature point that is closest in 3D
space to our current texture coordinate. The distance to this feature point, combined with the distance
to the next-closest feature point, can be combined to achieve interesting visual effects.

ShaderTexture {
  effects Effect {
    language "GLSL"
    parts EffectPart {
      type "FRAGMENT"
      url "data:text/plain,
        #version 120

        void PLUG_texture_color(inout vec4 texture_color,
          const in vec4 tex_coord)
        {
          const int count = ...;
          const vec3 feature_points[count] = vec3[count](...);
          const vec3 feature_colors[count] = vec3[count](...);

          float[count] distances;
          int closest0, closest1;
          for (int i = 0; i < count; i ++)
          {
            distances[i] = distance(vec3(tex_coord), feature_points[i]);
            /* ...
             Update closest0 to indicate the closest feature point,
             that is distances[closest0] is smallest among all distances.
             Update closest1 to index of the 2nd-closest feature point.
            */
          }

          texture_color.rgb = pow(distances[closest1] -
            distances[closest0], 0.3) * 2.0 * feature_colors[closest0];
        }"
    }
  }
  defaultTexCoord "BOUNDS3D"
}
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Note that this is a very simple approach to implementing cellular texturing. Much more optimal imple-
mentation is possible. There are also many variations that achieve different visual appeal. See our en-
gine demo models (http://castle-engine.sourceforge.net/demo_models.php) for a complete and working
implementation.

Figure 5.4, “Cellular texturing” shows this texture used in various settings. It can be combined with
other textures without any effort — in this case, we show it combined with a cube map texture that
simulates a mirror.

Figure 5.4. Cellular texturing

Cellular texturing. Cellular texturing mixed with a mir-
ror by cube environment mapping.

5.5.3. When to use the ShaderTexture
For textures other than the ShaderTexture, when the texture_color plugs are called, the in-
ternal shaders have already calculated the initial texture color by actually sampling the texture image.
This is useful if you want to modify this color. If you'd rather ignore the normal sampled color, and
always override it with your own, consider using the special ShaderTexture node instead. Using
a normal texture node (like ImageTexture) for this would be uncomfortable, as you would have to
load a dummy texture image, and the shaders could (depending on optimization) waste some time on
calculating a color that will be actually ignored later.

Note that in all cases (effects at ImageTexture, at ShaderTexture, etc.) you can always use
additional textures inside the effect. Just like inside a standard ComposedShader, you can declare an
SFNode field inside an Effect to pass any texture node to the shader as a uniform value. This allows
to combine any number of textures inside an effect. The only difference between ShaderTexture
and other textures is what the system does automatically for you, that is what color is passed to the first
texture_color plug.
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Figure 5.5. ShaderTexture doing an edge detection operation on a normal
ImageTexture

5.5.4. Texture resolution does not matter
The shader effects for textures are calculated at each screen fragment, not at each texel. So the effects are
not concerned with the texture size or texture filtering options. The texture_color plug receives
the interpolated texture coordinates. Figure 5.6, “Texture effects are not concerned with the texture
resolution” shows a blue arc drawn on a texture by our effect. The arc border is perfectly smooth, without
any concern about the pixel resolution of the underlying texture.

Figure 5.6. Texture effects are not concerned with the texture resolution

18



Chapter 6. Extensions for geometry
shaders
Geometry shaders are an optional stage of 3D rendering. A geometry shader program is executed once
for each primitive, like a single triangle. It works between the vertex and fragment shader — it knows
all the outputs from the vertex shader, and is responsible for passing them to the rasterizer. Geometry
shader can use the information about given primitive (vertex positions and attributes) and can generate
other primitives. A single geometry shader may generate any number of primitives, so it is possible to
“explode” a single input primitive into a number of others. Or we can entirely discard some primitives.
The type of the primitive may be changed by the geometry shader — for example, triangles may be
converted into points or the other way around.

Figure 6.1. Converting mesh into a dense line and point sets by geometry shaders

More details about using the geometry shaders with X3D and our engine are on http://castle-engine.
sourceforge.net/x3d_implementation_shaders.php#section_geometry. The examples there show how to
use the standard ComposedShader node to define a geometry shader for the shape. Here, we inves-
tigate how our effects improve the geometry shaders.

6.1. Robust geometry shaders
When we write a geometry shader, we want to control the logic of the primitive generation and the
output primitive type. This means that the shader author wants to provide the main part of the geometry
shader, that contains the main() entry point and necessary layout declarations.

We want to enable integration of our effects with user geometry shaders. It must be possible to write a
flexible geometry shader code, that works with any internal effects and user effects in Effect nodes.
In other words, when writing the geometry shaders, we do not want to hardcode what values have to be
passed from vertex processor to the rasterizer. To make this possible, with every geometry shader we
will link additional code with three functions:

• void geometryVertexSet(const int index) — set output vertex to be equal to the
input vertex of the given index.

• void geometryVertexZero() — set all output vertex attributes to zero. This is really useful
only before doing a series of geometryVertexAdd calls.
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• void geometryVertexAdd(const int index, const float scale) — add to the
output vertex given input vertex, scaled.

The idea is that geometryVertexSet can be used to simply pass-through values from vertex pro-
cessing to the rasterizer. Calling geometryVertexSet(i) is equivalent (but possibly more effi-
cient) to

geometryVertexZero();
geometryVertexAdd(i, 1.0);

For example, this is a trivial pass-through geometry shader, that doesn't do anything. Thanks to using
geometryVertexSet, every other effect still works (without geometryVertexSet, various ef-
fects would break, because values would not be passed from vertex shaders to fragment shaders). This
is what we mean by “robust” geometry shaders.

effects Effect {
  language "GLSL"
  parts EffectPart {
    type "GEOMETRY"
    url "data:text/plain,
      #version 150

      layout(triangles) in;
      layout(triangle_strip, max_vertices = 3) out;

      void geometryVertexSet(const int index);

      void main()
      {
        for(int i = 0; i < gl_in.length(); i++)
        {
          gl_Position = gl_in[i].gl_Position;
          geometryVertexSet(i);
          EmitVertex();
        }
        EndPrimitive();
      }"
  }
}

For more elaborate cases, geometryVertexAdd may be used to blend many input vertexes into one
final output vertex. An example below shows a geometry shader that replaces every triangle with an
averaged single point.

effects Effect {
  language "GLSL"
  parts EffectPart {
    type "GEOMETRY"
    url "data:text/plain,
      #version 150

      layout(triangles) in;
      layout(points, max_vertices = 1) out;

      void geometryVertexZero();
      void geometryVertexAdd(const int index, const float scale);
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      void main()
      {
        gl_Position = (
          gl_in[0].gl_Position +
          gl_in[1].gl_Position +
          gl_in[2].gl_Position ) / 3.0;
        geometryVertexZero();
        geometryVertexAdd(0, 1.0 / 3.0);
        geometryVertexAdd(1, 1.0 / 3.0);
        geometryVertexAdd(2, 1.0 / 3.0);
        EmitVertex();
        EndPrimitive();
      }"
  }
}

The geometryVertexXxx functions “magically” take into account all the attributes that need to be
handled for renderer internal effects. User effects (Effect nodes) may have to override corresponding
geometry_vertex_xxx plugs to also be automatically handled this way.

6.2. Effects that cooperate with geometry
shaders
User effects that want to cooperate with geometry shaders have to override plugs PLUG_geometry_-
vertex_xxx. The exact specification of these plugs is in Section A.4, “Geometry shader plugs”. Over-
riding these plugs allows to pass-through or blend custom vertex attributes needed by the effects. By
correctly overriding them, the user effects can work regardless if the geometry shader is linked or not.

To override these plugs, user effects must include an EffectPart with type set to "GEOMETRY".
This EffectPart code is optional. It will be used if an other effect will provide a main() entry for
geometry shaders, and discarded otherwise.

Our goal throughout this paper is to make effects independent from each other, and composable with
each other. See the example compositing_shaders/geometry_shader_optional.x3dv
in our demo models. It shows that all kinds of effects, including geometry shader effects, may be created
and applied independently from each other. As always, just placing two or more effects together on the
X3D effects field makes them automatically cooperate.

There is one obstacle here. In case of user-defined vertex attributes, using the geometry shader means
that the attribute name must change on its way from the vertex shader to the fragment shader. That is
because you have to use different input and output names for this attribute inside the geometry shader.
On the other hand, when there is no geometry shader, attribute name must be exactly the same in both
the vertex shader and fragment shader. This means that creating a vertex, fragment and geometry shader
combo in which the geometry shader is optional is not possible in pure shading language like GLSL. To
overcome this, we automatically define a symbol HAS_GEOMETRY_SHADER for all fragment shaders'
parts. This way we can write in the fragment shader code like:

#ifdef HAS_GEOMETRY_SHADER
  #define my_attribute my_attribute_fragment
#endif
in float my_attribute;

Such fragment shader can receive its input either from the geometry shader (under the name my_at-
tribute_fragment) or straight from the vertex shader (under the name my_attribute).
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Chapter 7. Defining custom plugs
In a shader code, new plug may be defined by a magic comment:

/* PLUG: name (param1, param2, ...) */

This defines a point where calls to user functions declared as PLUG_name will be inserted. They will
be called with given parameters.

Many effects may use the same PLUG_name. Even within a single effect, the same PLUG_name may
be used many times. All the PLUG_name functions will be uniquely renamed to not collide with each
other.

The calls will be added in the order they are specified on the effects list. More precisely, the most
local effects (at light sources and textures) are called first, then the effects at shape appearance, and
finally the effects inside the grouping nodes. Although, preferably, for most effects this order will not
matter.

For the effects on lights and textures, we first try to find the plug specific to the given light or tex-
ture node. This means that using the PLUG_light_scale inside the X3DLightNode.effects
changes only the given light node contribution. Contrast this with using the same PLUG_light_s-
cale inside Appearance.effects, in which case the intensity of all the light sources on the given
shape can be changed.

A plug is often defined to allow modifying some parameter repeatedly (like adding or modulating the
fragment color), so one or more of the parameters are often allowed to be handled as “inout” values.

The same plug name may be defined many times in the source shader. That is, the magic comment /*
PLUG: name ... */ may be repeated a couple of times, with the same name. This means that
the final shader may call every matching PLUG_name function many times. This is useful when the
algorithm is naturally expressed as a loop, but it had to be unrolled for shader source (for example, to
slightly tweak some loop iterations).

Currently all the plugs must be procedures, that is their result type must be declared as void. We have
been considering a possibility of functions, where part of the calculation may be replaced by a call
to a plugged function. While not difficult to implement, this idea seems unnecessary after many tests.
Procedural plugs are easier to declare, as the call to the plug may be simply inserted, while in case of
function it will have to replace some previous code. This also means that using a procedural plug never
replaces or removes some existing code, which is a very nice concept to keep. We want the effects to
cooperate with each other, not to “hijack” from each other some parts of the functionality.

New plugs can be defined inside the Effect nodes, as well as inside the complete shaders (like standard
ComposedShader nodes). In the first case, the plugs are only available for the following effects of
the same shape.

The advantage of using magic comments to define plugs is that they can be ignored and a shader source
remains valid. This means that ComposedShader nodes can define custom plugs and still work (al-
though with no extra effects) even in X3D browsers that do not support our extensions.

7.1. Forward declarations
Suppose we have an effect X that defines a new plug, by including a magic /* PLUG: ... */
comment. When this plug is used by another effect Y, then an appropriate function call is automatically
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inserted into the generated shader. In the middle of the source code of effect X, a function defined in
effect Y has to be called. This is the simplest implementation of our plugs.

Additionally, a forward or external declaration of the called function may need to be inserted into the
effect X. That is because Y may be in a separate compilation unit (in case of GLSL), or just defined
lower in the code. In simple cases, such forward or external declarations can be inserted right at the
beginning of effect X code.

Some shading language directives are required to be placed before all normal declarations. For example,
in case of the OpenGL shading language, the #version as well as some #extension directives must
occur at the beginning of the shader code. To handle such cases, another magic comment /* PLUG-
DECLARATIONS */ is available. If present, it signifies a place where forward or external declarations
should be inserted.

7.2. Invalid shader code
The behavior is defined only if the provided shading language code is a correct, self-contained code.
The errors (like unterminated block) may only be detected after the complete shader is determined and
compiled by the GPU. It should be noted that for shading languages with separate compilation units, the
parsing errors can be at least reported always for the correct code piece (effect part).

An invalid effect code may disable all other user effects on the given shape. That is because there's
no reliable way to detect which user effect prevents the compilation. At least for shading languages
without the separate compilation units feature. In such case, the application may decide to disable all
user-provided effects for a given shape. However, this isn't exactly a new problem — bad shader code
may always cause enough trouble to prevent the shape from being sensibly rendered.

The application does not need to parse the shader code at any point. Only a trivial text search in the
code is necessary to detect the magic plug function names and comments.
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Chapter 8. Examples
A static screenshot will never express the freedom of movement in an animated 3D scene. So we encour-
age you to try the examples mentioned in this chapter yourself. Download view3dscene, our X3D
browser, from http://castle-engine.sourceforge.net/view3dscene.php. Then download our demo mod-
els from http://castle-engine.sourceforge.net/demo_models.php. You can now run view3dscene, and
open with it various models inside demo_models/compositing_shaders/ subdirectory. Also
the water demos inside demo_models/water/ should be interesting.

Effects may define and use their own uniform variables, including textures, just like the standard shader
nodes. So we can combine any number of textures inside an effect. As an example we wrote a simple
effect that mixes a couple of textures based on a terrain height. See Figure 8.1, “ElevationGrid with 3
textures mixed (based on the point height) inside the shader”. We could also pass any other uniform
value to the effect, for example passing the current time from an X3D TimeSensor allows to make
animated effects.

Figure 8.1. ElevationGrid with 3 textures mixed (based on the point height) inside
the shader

We can wrap 2D or 3D noise inside a ShaderTexture. See Figure 8.2, “3D and 2D smooth noise on
GPU, wrapped in a ShaderTexture”. A texture node like NoiseTexture from InstantReality [Noise-
Texture] may be implemented on GPU by a simple prototype using the ShaderTexture.

Figure 8.2. 3D and 2D smooth noise on GPU, wrapped in a ShaderTexture
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Water can be elegantly implemented using our effects, as a proper water simulation is naturally a com-
bination of a couple effects. To simulate waves we want to vary vertex heights, or vary per-fragment
normal vectors (for best results, we want to do both things). We also want to simulate the fact that water
has reflections and is transparent. We have implemented a nice water using this approach, with (initially)
two independent effect nodes. See Figure 8.3, “Water using our effects framework”.

We were also able to easily test two alternative approaches for generating water normal vectors. One
approach was to take normals from the pre-recorded sequence of images (encoded inside X3D Movi-
eTexture, with noise images generated by the Blender renderer). The second approach was to calcu-
late normals on the GPU from a generated smooth 3D noise. The implementation of these two approach-
es is contained in two separate Effect nodes, and is concerned only with calculating the normal vec-
tors in the object space. Yet another Effect node is responsible for transforming these normal vectors
into the eye space. This way we have extracted all the common logic into a separate effect, making it
clear where the alternative versions differ and what they have in common. This was possible because
one effect can define new plug names, that can be used by the other effects.

As for the question “Which approach to generating water normals turned out to be better?” Predictably,
we showed that using GPU noise is slower, requires a better GPU, but also improves the quality notice-
ably. With GPU noise, there is no problem with aliasing of the noise texture and the noise parameters
can be adjusted in real-time.

Figure 8.3. Water using our effects framework

Per-pixel lighting. Bump mapping.

Reflections and refractions. All effects.

We also have plugs to change the geometry in object space. Since the effect is automatically integrated
with all the browser shaders, you only need to code a simple function to change the vertex positions. The
effect instantly works with all the lighting and texturing conditions. Since the transformation is done
on GPU, there's practically no speed penalty for animating thousands of flowers in our test scene. See
Figure 8.4, “Flowers bending under the wind, transformed on GPU in object space”.
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Figure 8.4. Flowers bending under the wind, transformed on GPU in object space

We would like to emphasize that all the effects demonstrated here are theoretically already possible to
implement using the standard X3D Programmable shaders component [X3D Shaders]. However, such
implementation would be extremely cumbersome. You would first have to implement all the necessary
multi-texturing, lighting, shadows, and other rendering features in a shader code. This is a large work
if we consider all the X3D rendering options. Also note that a shader should remain optimized for a
particular setting. The only manageable way to do this, that would work for all the lighting and texturing
conditions, is to write a shader generator program. Which is actually exactly what our effects already do
for you — the implementation of our effects constructs and links the appropriate shader code, gathering
the information from all the nodes that affect the given shape. The information is nicely integrated with
X3D, effects are specified at suitable nodes, and their uniform values and attributes are integrated with
X3D fields.
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Chapter 9. Implementation
We have implemented everything described in this paper in our open-source (LGPL) 3D game engine,
see [Castle Game Engine].

Our current implementation supports only one shading language: GLSL, the OpenGL Shading Lan-
guage. As our engine is cross-platform and focused on OpenGL, this is the most natural shading lan-
guage for us. However, we have designed our extensions to be applicable to other shading languages
(like Cg and HLSL) as well.

One notable concept of GLSL is the separate compilation units. It means that a code can be split into
many units which are parsed and compiled separately, and only linked together. This allows to write
cleaner shader code (you cannot use undeclared functions from other shader parts). It also naturally
matches with our effects definition, as each EffectPart becomes simply one compilation unit.

A similar feature is found in many other programming languages, under the names of “units” or “mod-
ules”. But it is not available in two other popular shading languages: Cg and HLSL. To make sure that
our idea is applicable to these shading languages, we have explicitly tested that even without the sepa-
rate compilation units, our implementation still works without problems.

9.1. Outline of the implementation
We present a pseudo-code that generates a complete shader source for rendering a given shape. It takes
into account standard rendering features (X3D light sources, textures and such), custom shaders (by X3D
nodes like ComposedShader) and our shader effects (by Effect nodes). All effects are properly
combined to form the final shader code.

We keep the final shader code as three arrays of strings. Each array keeps code for a specific shader
type: vertex, geometry and fragment. Each string corresponds to a compilation unit for GLSL, for other
shading languages the strings can be just concatenated at the end. To make the plugs actually work,
we add calls to their functions. We also add external function declarations at appropriate places. For
languages other than GLSL, they will simply become forward function declarations when all the parts
are concatenated.

9.1.1. Helper functions
First define a function Plug. It is responsible for actual text processing that makes the plug functions
correctly called. The argument PlugValue is scanned for all PLUG_xxx function definitions.

The argument CompleteCode is searched for the matching /* PLUG: xxx ... */ comments.
The final shader (for given shape) in FinalShader is also searched for the /* PLUG: xxx ...
*/ comments. In practice, CompleteCode given here is either the FinalShader or the shader for
a specific texture or light source.

Appropriate calls and forward declarations are inserted to the CompleteCode. In the process, all
handled PLUG_xxx functions inside PlugValue are also renamed to unique names, since a single
plug may be overridden by many effects. The modified PlugValue is inserted to the CompleteCode
as well. Effectively, the caller can usually “forget” about the PlugValue afterwards — it has been
processed, and correctly merged with the CompleteCode.

type
  TShaderType = (vertex, geometry, fragment);
  TShaderSource = array [TShaderType] of a string list;
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var
  { shader for the whole shape }
  FinalShader: TShaderSource;

procedure Plug(
  EffectPartType: TShaderType;
  PlugValue: string;
  CompleteCode: TShaderSource);

var
  PlugName, ProcedureName, PlugForwardDeclaration: string;

  { Look for /* PLUG: PlugName (...) */ inside
    given CodeForPlugDeclaration.
    Return if any occurrence found. }
  function LookForPlugDeclaration(
    CodeForPlugDeclaration: string list): boolean;
  begin
    Result := false
    for each S: string in CodeForPlugDeclaration do
    begin
      AnyOccurrencesHere := false
      while we can find an occurrence
        of /* PLUG: PlugName (...) */ inside S do
      begin
        insert into S a call to ProcedureName,
        with parameters specified inside the /* PLUG: PlugName (...) */,
        right before the place where we found /* PLUG: PlugName (...) */

        AnyOccurrencesHere := true
        Result := true
      end

      if AnyOccurrencesHere then
        insert the PlugForwardDeclaration into S,
        at the place of /* PLUG-DECLARATIONS */ inside
        (or at the beginning, if no /* PLUG-DECLARATIONS */)
    end
  end

var
  Code: string list;
begin
  Code := CompleteCode[EffectPartType]

  HasGeometryMain := HasGeometryMain or
    ( EffectPartType = geometry and
      PlugValue contains 'main()' );

  while we can find PLUG_xxx inside PlugValue do
  begin
    PlugName := the plug name we found, the "xxx" inside PLUG_xxx
    PlugDeclaredParameters := parameters declared at PLUG_xxx function

    { Rename found PLUG_xxx to something unique. }
    ProcedureName := generate new unique procedure name,
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    for example take 'plugged_' + some unique integer

    replace inside PlugValue all occurrences of 'PLUG_' + PlugName
    with ProcedureName

    PlugForwardDeclaration := 'void ' + ProcedureName +
    PlugDeclaredParameters + ';' + newline

    AnyOccurrences := LookForPlugDeclaration(Code)

    { If the plug declaration is not found in Code, then try to find it
      in the final shader. This happens if Code is special for given
      light/texture effect, but PLUG_xxx is not special to the
      light/texture effect (it is applicable to the whole shape as well).
      For example, using PLUG_vertex_object_space inside
      the X3DTextureNode.effects. }
    if not AnyOccurrences and
       Code <> Source[EffectPartType] then
      AnyOccurrences := LookForPlugDeclaration(Source[EffectPartType])

    if not AnyOccurrences then
      Warning('Plug name ' + PlugName + ' not declared')
  end

  { regardless if any (and how many) plug points were found,
    always insert PlugValue into Code. This way EffectPart with a library
    of utility functions (no PLUG_xxx inside) also works. }
  Code.Add(PlugValue)
end

Using the Plug function, we can create the EnableEffects function. It handles the effects list,
correctly processing it and adding to the given CompleteCode..

procedure EnableEffects(
  Effects: list of Effect nodes;
  CompleteCode: TShaderSource);
begin
  for each Effect in Effects do
    if Effect.enabled and
       Effect.language matches renderer shader language then
      for each EffectPart in Effect.parts do
        Plug(EffectPart.type, GetUrl(EffectPart.url), CompleteCode)
end

9.1.2. Final algorithm
Using the above functions, we construct the final shader code for given shape. All the effects (including
effects specific to lights and textures) are correctly applied by the algorithm below. Specific requirements
of the geometry shaders are also taken into account.

FinalShader := new TShaderSource
set FinalShader to basic rendering code
HasGeometryMain := false
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At the beginning, FinalShader it set to a simple code that renders 3D object with no lights, no
textures and no effects. The code contains magic /* PLUG: xxx ... */ comments, which will
allow to enhance it in the following steps.

The real GLSL shader code used by our engine at this step may be found in our engine
sources. See http://svn.code.sf.net/p/castle-engine/code/trunk/castle_game_engine/src/x3d/opengl/glsl/
template.vs for the vertex shader, http://svn.code.sf.net/p/castle-engine/code/trunk/castle_game_engine/
src/x3d/opengl/glsl/template.fs for the fragment shader and http://svn.code.sf.net/p/castle-engine/code/
trunk/castle_game_engine/src/x3d/opengl/glsl/template.gs for the geometry shader.

Note that our default geometry shader contains only a set of utility functions, without a main() entry.
It will be discarded later if no geometry shader code with a main() definition will be found in the user
shaders. That is, if HasGeometryMain will remain false. See Chapter 6, Extensions for geometry
shaders for reasons of this behavior.

if a complete custom shader code is provided then
  FinalShader[fragment] := empty
  FinalShader[vertex] := empty
  FinalShader := FinalShader + custom shader code
  HasGeometryMain := custom shader code contains some "GEOMETRY" shader

The X3D file may contain shader code that should replace the default shaders, following [X3D Shaders]
specification. For example, a ComposedShader node may be present with a complete GLSL code.
We use it at this step.

This step trivially allows the ComposedShader code to also contain plug declarations, like /*
PLUG: xxx ... */. The same plug names as our default names may be used (like fragmen-
t_modify and so on), in which case the same user effects will be useful with the custom shader. This
even allows the browser to add some internal effects (like shadow maps) to the custom shader template.

Alternatively, the ComposedShader may have a completely different approach to rendering. Then it
may expose a completely different set of plug names, reflecting a different set of parameters to control.

Note again the special treatment of geometry shaders. Our default geometry shader code (which should
contain our utility functions) is always kept. We also update HasGeometryMain.

for each Light in shape.Lights do
  LightShader := new TShaderSource
   set LightShader to basic lighting code (optimized for this Light)
   EnableEffects(Light.Effects, LightShader)
   LightContribution := LightShader.ExtractFirst
   Plug(fragment, LightContribution, FinalShader)
   FinalShader := FinalShader + LightShader

A little care is needed to correctly add light sources. Remember that lights may have user-defined effects
that should be applied only to the specific light source. That's why we temporarily keep the shader code
specific to a given light source in a separate LightShader variable.

The light source contribution will be linked with the final shader also using our plugs. We initial-
ly add to LightShader a function called PLUG_add_light_contribution_side that
takes care of calculating light contribution, following normal X3D light equations. This function
should be optimized for the given light type (spot, directional, point) and light parameters (for
example, lights without an attenuation factor or an infinite radius or zero specular term may be op-
timized at this point). If we want Phong shading, this function should be added as the first string of
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the LightShader[fragment]. If we want Gouraud shading, it should go to LightShad-
er[vertex] instead.

The actual initial GLSL light shader code used by our engine at this step may be found in our
engine sources, see http://svn.code.sf.net/p/castle-engine/code/trunk/castle_game_engine/src/x3d/
opengl/glsl/template_add_light.glsl.

Next we apply Effect nodes specific to this light source. After this, LightShader contains
the initial code merged with user effects. Doing it this way means that the standard light source
plugs (like light_scale) as well as custom plugs (defined in one Effect node and used by
following Effect nodes) work correctly.

After applying user effects, we extract (get and delete) from LightShader our initial code. It
may be modified now, since calls to user effects are now present inside.

The extracted LightContribution must now be connected with the FinalShader code.
This can be done by a simple call to the Plug function, which will notice the PLUG_add_-
light_contribution_side present inside LightContribution. After this operation,
everything is connected: final shader calls PLUG_add_light_contribution_side, which
in turn calls user effects on the light source.

Finally, add the remaining code to be linked together with the FinalShader. This step simply
adds the strings from one list to the other, with no processing.

for each Texture in shape.Textures do
  TextureShader := new TShaderSource
  set TextureShader to basic code (optimized for this Texture)
  EnableEffects(Texture.Effects, TextureShader)
  TextureApplication := TextureShader.ExtractFirst
  Plug(fragment, TextureApplication, FinalShader)
  FinalShader := FinalShader + TextureShader

Texture effects require a similar approach as light effects, to correctly catch all the ways how plugs may
be used.

We start by creating a default shader code that applies the texture, knowing the texture type (2D, 3D,
cube map), texture mode (multiply, add and such) and other properties. It should follow all X3D textur-
ing and multi-texturing requirements. The code should define a function named PLUG_main_tex-
ture_apply that can be later connected to the final shader. It should also declare plug named tex-
ture_color, that can be used by user effects for this texture.

There are actually more differences between the application of the light and texture effects. Section 9.2,
“Correct shadows from multiple light sources” describes one feature that makes their logic slightly more
complicated.

EnableEffects(appearance node.Effects, FinalShader)

for each group node containing this shape do
  EnableEffects(group node.Effects, FinalShader)

Effects specific to a given shape, and effects for all groups containing this shape, are applied.

The effects at this point may override also lights and textures plugs, like light_scale. That's sim-
ply because we have already added all the lighting and texturing shading code to the FinalShader.
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Overriding light_scale at this point means that we scale the contribution of every light by the same
function.

if HasGeometryMain then
  for each FragmentPart in FinalShader[fragment] do
    FragmentPart := '#define HAS_GEOMETRY_SHADER' + FragmentPart else
  FinalShader[geometry] := empty

Decide if we really want to link geometry shaders, based on whether we have main() for geometry
shaders. If yes, then HAS_GEOMETRY_SHADER symbol has to be defined, as it may be useful for
fragment shader authors. Otherwise, discard all geometry shader code.

At the end, FinalShader is just a collection of strings forming a shading language source code. For
GLSL, each string is naturally a “separate compilation unit”, and can be compiled in isolation. For other
shading languages, the parts may be simply concatenated together as necessary.

The full, actual source code of this operation is available in our engine sources, see the unit GLRender-
erShader. Source code is on http://svn.code.sf.net/p/castle-engine/code/trunk/castle_game_engine/src/
x3d/opengl/glrenderershader.pas.

9.2. Correct shadows from multiple light
sources
A texture may be a shadow map projected from a light source. In our paper [X3D Shadow Maps] we
have noted that the shadow should scale only the appropriate light source contribution. This allows to
observe correct shadows from multiple light sources. This means that shadow map textures must be
used in a different stage of the calculation than normal textures.

Our plugs idea allows to do this, in a clean and concise way. At the place where TextureShader is
created in the pseudo-code from the previous section, we treat shadow maps specially. If the light source
corresponding to the shadow map affects our shape then we do not apply the texture in a usual way.
Instead, we call the Plug function to augment the specific light source shader with a shadow check,
like this:

if Texture is GeneratedShadowMap and
   Texture.light affects the shape then
  Plug(fragment,
    'uniform sampler2DShadow shadowMap01;
     void PLUG_light_scale(inout float scale, ...)
     {
       scale *= shadow2DProj(shadowMap01, shadowMap01TexCoord).r;
     }', LightShader);

The simple call to shadow2DProj may be replaced with a variant of the Percentage Closer Filtering
(see [GPU Gems PCF]).

The calculation of light effects has to be complicated a little to make it work. In our simple pseudo-code,
we added the effects to the LightShader and then we immediately merged LightShader with
the FinalShader. Now, we need to remember the LightShader value for a longer time, in case
it should be augmented with a shadow map. Alternatively, we could search for corresponding shadow
maps at the moment when LightShader is created.
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9.3. Pool of shaders
Straightforward use of the pseudo-code above means that we create new shader for each rendered shape.
This works correctly, but is very time and memory consuming for large scenes. A good implementation
should try to reuse the shaders. This can be achieved by keeping a pool of available shaders. For each
newly created shader, we calculate a hash value (reflecting the whole shader configuration) and insert
this shader into the pool. When a new shader is needed, we first look for it in the pool (using the hash
value of the desired configuration), and if we find it — we reuse it (increasing the reference count).
Only if the shader is not found, we create a new one. This is quite simple to do, and it provides a perfect
sharing of shaders.

The hash value could be calculated based solely on the final string of the shader. However, this is too
slow in our experience — as it means that all the string operations have to be performed before we even
know the hash. It's much faster to calculate the hash value looking at all the parameters that will affect
the generated shader source, including all the participating Effect and ComposedShader nodes, as
well as the standard X3D lights sources, textures, fog parameters and so on. Only when we really need
to create a new shader, then we calculate the actual shader source code and compile it. This means that
our pseudo-code gets a little more complicated: most operations are in fact delayed. For example, at the
first stage we only iterate over the light sources to update the hash value and remember the light source
parameters. Later, if the actual source code is needed, we actually construct the shader code using the
remembered light source parameters.

An additional advantage of the “pool of shaders” appears when a subset of the needed shaders is known
in advance. For example, imagine an evening outdoor scene, with a storm in the distance. The lighting
cracks the sky occasionally, making everything temporarily bright. In technical words, the scene has
highly dynamic lighting, and the shaders for various lighting conditions must be swapped instantly, to
keep the simulation smooth. In such case, an application may initialize the pool to contain some shaders
with artificial non-zero use count. This way, some shader configurations are always kept initialized and
ready to be used immediately.

9.4. Speed
Very nice thing about our effects framework is that it does not cause any speed loss. Effects code is just
combined into the final shader code, without any transformations that could make it slower. Our process
of “combining” effects is essentially adding function calls around. Fortunately, a function call has no
speed penalty. Existing shading languages are defined such that functions can always be inlined (there is
no recursion allowed, and parameter qualifiers have simple interpretation), and as far as we know they
are actually always inlined by existing shading language compilers.

9.5. Inspect shaders generated by our im-
plementation
You can run our view3dscene with --debug-log-shaders command-line option. Output will
show you the final shader code generated, and also the OpenGL log after linking the shaders. Be sure
to redirect the output to a file as it may be quite large. This is a useful way to learn about our shader
rendering internals.

Another useful option to try in view3dscene is to switch to View → Shaders → Enable For Everything
mode. This will force shader rendering for all the shapes, while by default we use shader rendering only
for the shapes that require particular effects (shaders by ComposedShader, effects described in this
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paper, shadow maps and such). Forcing shader rendering for everything allows to see how our shaders
implement the whole X3D lighting and texturing model. It also forces all the lighting calculation to be
done per-pixel, resulting in perfect specular highlights and spot light shapes.
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Chapter 10. Conclusion
We show a new approach for developing effects using the GPU shading languages. It allows to combine
various shader effects with each other and with application internal shaders. Our approach is relatively
easy to implement and allows the authors to directly use the existing GPU shading languages. We pro-
pose a number of extensions to the X3D, an open standard for 3D data, to make our effects available for
3D content authors. We have implemented our approach for the GLSL shading language.
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Appendix A. Reference of available
plugs
Below is a quick reference of plugs available in our implementation. We have found these plugs to
be sufficient for a wide range of effects, although of course there's always a place for changes and
improvements. Remember that you can always define your own plugs in your effects and shader nodes.

Parameter names are shown below merely to document the parameter meaning. Of course you can
change the parameter names when declaring your own plug function. To some extent you can also
change the parameter qualifiers:

• If a parameter below is “inout”, you can change it to “in”, or “const in” if you don't want to modify
the given value.

• You can also change the “inout” parameter to just “out”, if you want to unconditionally overwrite the
given value. Although this is usually not advised, as it means that you disable previous effects working
on this parameter. Most of the time, summing or multiplying to the previous value is a better choice.

• If a parameter below is shown as “in”, you can add or remove the const qualifier as you wish. Using
const may allow the shader compiler for additional optimizations.

A.1. Vertex shader plugs
void PLUG_vertex_object_space_change(
  inout vec4 vertex_object,
  inout vec3 normal_object)

You can modify the vertex position and normal vector in object space here. If you don't need to modify
the vertex position, consider using the vertex_object_space instead, that may result in more
optimized shader.

void PLUG_vertex_object_space(
  const in vec4 vertex_object,
     inout vec3 normal_object)

Process the vertex and normal in object space. You cannot change the vertex position here, but you can
still change the normal vector.

void PLUG_vertex_eye_space(
  const in vec4 vertex_eye,
  const in vec3 normal_eye)

Process the vertex and normal in eye (camera) space.

A.2. Fragment shader plugs
void PLUG_fragment_eye_space(
  const vec4 vertex_eye,
  inout vec3 normal_eye)
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Process the vertex and normal in eye space, at the fragment shader. You can modify the normal vector
here, this is useful for bump mapping.

Note that if you modify here normal vector, you may have to take care to properly negate it. When
gl_FrontFacing is false, we're looking at the other side than where standard gl_Normal was
pointing. For example, for bump mapping, it's most sensible to negate only the Z component of the
normal vector in tangent space.

Note that this "plug" exists only when using Phong shading, not Gouraud shading.

void PLUG_texture_color(
  inout vec4 texture_color,
  [const in samplerXxx texture,]
  const in vec4 tex_coord)

Calculate or modify the texture color. This plug is available for texture effects. The second parameter is
special: for ShaderTexture, it doesn't exist at all. For other texture nodes, the sampler type depends
on the corresponding X3D texture node: sampler2D for 2D textures, sampler3D for 3D textures,
samplerCube for cube maps, and sampler2DShadow for GeneratedShadowMap.

void PLUG_main_texture_apply(
  inout vec4 fragment_color,
  const in vec3 normal_eye)

Called right after main texture was applied. The main texture is

• diffuseTexture in case of Phong Material

• emissiveTexture in case of UnlitMaterial

• baseTexture in case of PhysicalMaterial

This plug is called always, even if the main texture is not actually present. You can change the fragment
color now, for various effects.

There's a big difference between how Phong and Gouraud shading interact with this plug:

• In Phong shading, this plug is called before the lighting was applied. Because for Phong shading, the
texture is the input for the lighting equation parameter.

• In Gouraud shading this plug is called after the lighting was applied. Because for Gouraud shading,
the texture is applied in the fragment shader, and it is mixed with the color calculated from lights in
the vertex shader.

void PLUG_texture_apply(
  inout vec4 fragment_color,
  const in vec3 normal_eye)

Deprecated name for PLUG_main_texture_apply. Do not use in new code.

void PLUG_fragment_modify(
  inout vec4 fragment_color)

Called after lighting (including shadows) and textures are applied (regardless of whether Phong or
Gouraud shading is used). But before gamma correction (to change color from linear to monitor col-
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or-space) and tone mapping are done. This is probably the most useful plug to intuitively "change the
fragment color".

void PLUG_fog_apply(
  inout vec4 fragment_color,
  const vec3 normal_eye_fragment)

At this point, the fog is applied. Again you can change here the fragment color, as you desire. This is
called after lighting, textures and standard fog are all applied. You can use this to apply custom fog
equation.

This happens after gamma correction (to change color from linear to monitor color-space) and tone
mapping are done (because fog is done in final color space, to have fog color easily matching background
and UI, see https://castle-engine.io/fog).

void PLUG_fragment_end(
  const in vec4 fragment_color)

Do the final processing of the fragment. This is called after applying both textures and fog, and cannot
modify the fragment color anymore. This is useful for operations like alpha-testing the fragment.

A.3. Lights plugs (internal; at vertex or
fragment shader)
The plugs in this section are available at the same shader stage where the lighting is calculated.

• For Phong shading they are available at the fragment stage.

Phong shading is default since Castle Game Engine 7.0-alpha-snapshot on 2022-04-01,
see https://castle-engine.io/wp/2022/04/01/design-lights-using-castle-game-engine-new-light-com-
ponents-and-related-features-with-video/.

• For Gouraud shading they are available at the vertex stage.

We have not yet devised a portable way to specify them, to work regardless of the shading method used.
A simple solution would be to allow a stage name like "LIGHT" that is an alias for "FRAGMENT" or
"VERTEX", depending on the current shading model (that may change for each Shape node).

Please treat these plugs as internal for now. We may break the compatibility of these plugs!

void PLUG_light_scale(
  inout float light_scale,
  const in vec3 normal_eye,
  const in vec3 light_dir)

Scale the light source contribution. This plug is available at light source nodes' effects, to scale a par-
ticular light. It can also be used in shape or group effects, in which case it will affect the contribution
of all the lights on given shape.

The light_dir vector is a normalized direction to the light, in eye space.

void PLUG_material_light_ambient(
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  inout vec4 ambient)

Ambient color may be changed here. The initial value is a multiplication of material and light ambient
colors.

void PLUG_material_light_diffuse(
  inout vec4 diffuse,
  const in vec4 vertex_eye,
  const in vec3 normal_eye)

Diffuse color may be changed here. This is usually a multiplication of material and light diffuse colors,
but you can change it here into anything you like.

void PLUG_material_light_specular(
  inout vec4 specular)

Specular color may be changed here. The initial value is a multiplication of material and light specular
colors.

void PLUG_material_shininess(
  inout float shininess)

Shininess exponent may be changed here. The initial value is the material shininess exponent.

Note: the X3D Material.shininess and CommonSurfaceShader.shininessFactor are
usually in a [0..1] range, and they are multiplied by 128.0 to calculate the actual exponent for light
equations. This plug works with the actual exponent.

void PLUG_add_light_contribution(
  inout vec4 color,
  const in vec4 vertex_eye,
  const in vec3 normal_eye,
  in float material_shininess,
  in vec4 color_per_vertex)

Add color coming from lighting this material. This is used internally to add the light sources, with each
light source adding another add_light_contribution plug.

void PLUG_lighting_apply(
  inout vec4 fragment_color,
  const vec4 vertex_eye,
  const vec3 normal_eye_fragment)

At this point, the lighting is calculated. Light contributions are summed, along with material emissive
and global scene ambient colors, result is clamped to 1.0, and the alpha value is set correctly.

There's a big difference between how Phong and Gouraud shading interact with this plug:

• In Phong shading, this plug is called in fragment stage, after both lighting and textures are applied.
Because for Phong shading, the lighting is calculated after textures.

• In Gouraud shading this plug is called in vertex stage, after lighting but before texture application.
Because for Gouraud shading, the texture is applied later, in fragment shader.
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A.4. Geometry shader plugs
Each geometry shader plug PLUG_geometry_vertex_xxx enhances what happens when the cor-
responding geometryVertexXxx function is called. See Chapter 6, Extensions for geometry shaders
for details.

void PLUG_geometry_vertex_set(
  const in int index)

Set current geometry shader output to be equal to geometry shader input with given index. If your
effect defines a custom varying value (output from vertex shader, input to fragment shader) then you
should override this plug, to make geometry shaders working seamlessly with your effect.

void PLUG_geometry_vertex_zero()

Set current geometry shader output to be zero.

void PLUG_geometry_vertex_add(
  const in int index,
  const in float scale)

Add to the current geometry shader output value from input index, scaled by given scale.
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