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Abstract

We propose a number of X3D extensions to enable shadows in the
virtual worlds. Our higher-level extensions are an easy way to re-
quest shadows independently of their implementation. Lower-level
extensions allow to control the details of shadow maps generation
and projective texture mapping. Together, they allow the authors
to activate real-time dynamic shadows on 3D scenes. The exten-
sions expose also projective texture mapping for purposes other
than shadows, for example we can cast a color texture from a light
source. Introduced concepts map naturally to any basic shadow
maps implementation, and integrate nicely with existing X3D com-
ponents like textures and shaders.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
ture; I.3.6 [Computer Graphics]: Methodology and Techniques—
Languages, Standards

Keywords: X3D graphics, shadows, shadow maps, projective tex-
turing

1 Introduction

X3D [Web 3D Consortium 2008] is an open standard for represent-
ing rich 3D data. Many advanced graphic effects are available for
the creators of interactive 3D worlds.

Shadow maps [Williams 1978] are one of the major approaches for
generating real-time dynamic shadows. They are relatively sim-
ple to implement, supported by graphics hardware (both in fixed-
function pipeline and shaders), and with proper implementation can
achieve very good quality. They work with any geometry, includ-
ing difficult cases like 3D geometry that is not correctly closed, flat
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2D geometry and alpha-test textures. They have no problems with
dynamic environments.

A closely related subject is projective texturing [Everitt 2001a]. It
is utilized by the shadow maps algorithm, but is useful also in other
circumstances, when you want to ,,cast” a texture from a light.

In this paper we introduce a number of X3D extensions to use and
control shadow mapping and projective texturing. Our extensions
allow the authors of virtual worlds to easily use shadow maps in the
scene. They also expose the most useful shadow mapping parame-
ters, so that they can be tuned to achieve the best results. Authors
also get control over projective texturing, that may be used with any
kind of textures — like depth textures generated by shadow maps,
the standard color textures, and any other texture types expressible
in X3D.

Authors that attach shaders to the geometry (for example using
the OpenGL Shading Language, GLSL) get explicit control over
what happens with the shadow map values. This allows to use our
shadow maps in non-trivial scenarios, combining them with a cus-
tom shading methods and such. Also percentage closer filtering
[Bunnell and Pellacini 2004] can be trivially implemented inside
the shader.

For the developers of X3D browsers, our extensions strive to be
relatively easy to implement. Any basic shadow maps implemen-
tation should naturally map to presented new nodes and fields.
An example open-source implementation, supporting all the ex-
tensions’ features, is available inside the VRML/X3D engine on
http://vrmlengine.sourceforge.net/.

2 Shadow maps algorithm

For the purpose of better understanding the following extensions,
we present here a short overview how shadow mapping works. This
is intentionally a simplified overview, implementors will most def-
initely want to look at more detailed articles like NVidia presenta-
tions [Everitt 2001b], [Everitt et al. 2001]. Shadow maps are suit-
able for implementation in both OpenGL, Direct3D, and in software
renderers.

http://vrmlengine.sourceforge.net/


The first step is to generate the shadow map texture. We place the
camera at the position of a light source, and point it in the light’s
direction. Then we render the depth buffer of the scene to a depth
texture. This step must be done before rendering the actual scene
with shadows.

Figure 1: Shadow map, as seen from the light source. Darker col-
ors mean that the object is closer to the light source.

Since a point light source doesn’t have a direction, a common so-
lution is to render six depth textures along the six major directions
(-/+X, -/+Y, -/+Z, usually in the global coordinate space). This way
we map the view around an imagined cube around the light source.

For a directional light source, we need to know its position. Al-
though conceptually directional light is positioned at infinity, for
shadow maps we must assign a normal 3D position even to a di-
rectional light. Together with the projection near and far plane, this
position is needed to determine what depths will be captured accu-
rately, that is which shadow casters will cast a correct shadow.

For light sources that have parallel rays (like a directional light),
we use orthographic projection. For others (like a positional or spot
light) we use perspective projection.

Once we have a shadow map, the second step is to map the gener-
ated texture on shadow receiving geometry. This is done during
the normal rendering of the scene, when the camera corresponds to
the avatar view. We want to map the texture treating the light source
like a projector that ,,casts” the texture onto the scene. This stage of
the algorithm is known as the projective texturing, and can be used
as well for other purposes, like projecting standard color textures
over the scene.

Knowing the lights projection parameters and the current camera
parameters we want to calculate the texture coordinate t for a point
p like

t = S ∗ Lp ∗ Lv ∗ C−1
v ∗ p (1)

Where Lp is the light projection matrix, Lv is the light view matrix,
and Cv is the camera (representing the avatar) view matrix. S is a
trivial constant matrix to scale and shift clip coordinates by 1
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have the texture coordinates in [0..1] range.

Figure 2: Shadow map, as seen from the avatar camera. This is the
previous shadow map projected over the scene.

Calculated (t.x, t.y) can be used to sample the shadow map, to
get the distance from the light to the object that obscures the light
source at this point. Calculated t.z contains the distance from the
light to the current point. Thus the third and final step is to deter-
mine if the point lies in the shadow by comparing

t.z > texture(shadowMap, t.x, t.y) (2)

Note that in 3D graphics we use 4x4 matrices, and 3D positions
are expressed in the 4D homogeneous coordinates. The vectors
after perspective transformation will have the 4th component (t.w)
different than 1, so this cannot be ignored. So the real equation is
actually

t.z

t.w
> texture(shadowMap,

t.x

t.w
,

t.y

t.w
) (3)

For simplicity, let’s call t.z/t.w simply a d (for distance to the
point).

When the object is not in the shadow, d is equal to the texture value
(we’re looking at the object obscuring the light). Otherwise, it’s
larger (we’re looking at the object behind the one obscuring the
light). In a perfect world (assuming an infinite resolution of the
shadow map, no floating point errors etc.) d should never be smaller
than the right side of the equation.

Careful reader will notice now that the world is not actually per-
fect. Precision of the depth values is limited, and gets worse the
farther away from the light source we are. The shadow map resolu-
tion never matches perfectly the screen resolution (one shadow map
pixel may correspond to many screen pixels). And finally we have
to account for the floating point calculation errors. Due to these
problems, a small offset is needed to make the comparison with d
above behave stable. Our extensions encourage the implementation
to apply this offset when generating the shadow map, and allow the
author to adjust the offset parameters for particular cases.

At the end we want to actually use the results of the above compari-
son. That is, we want to render the places in shadow with darker
colors. In the simplest case, we can simply make the surface black
when it is in the shadow or use the original color when surface is
lit. This step is controlled fully in the shader, so shader authors may
apply here any shading algorithm they see fit.



3 Overview and discussion

Many scene elements cooperate to produce a nice shadow
effect: light sources, shadow casters and shadow receivers.
This enables various potential ways for spreading the shadow
information over the X3D nodes. Our extensions put
the main weight on the shadow receivers. You have
to explicitly designate shapes receiving the shadow: ei-
ther by the simple Appearance.receiveShadows field,
or by using the lower-level tools GeneratedShadowMap,
ProjectedTextureCoordinate and custom shaders.

Specifying additional shadow information at the light sources and
shadow casters is purely optional. Every light source may cast shad-
ows, and everything is a shadow caster by default.

Compare this with other approaches by BS Contact [Bitmanage-
ment 7.2], [Bitmanagement 6.2] and Octaga [Octaga ]. Their ap-
proaches favor specifying shadow information in separate nodes
(Shadow in Octaga, ShadowGroup in BS Contact) that explic-
itly enumerate shadow casters (occluders, emitters) and receivers.

Both Octaga and BS Contact provide also lower-level nodes for
storing the shadow maps (ShadowTexture in Octaga, for BS
Contact this is a special case of CompositeTexture3D). This
is analogous to our GeneratedShadowMap node and serves a
similar purpose: author can get more control over shadow mapping
this way. In particular, custom fragment shaders may be used to
visualize shadows.

Various needs guided the design of our shadow extensions:

1. Flexibility of what casts and receives the shadow. In the
extreme case, we could specify on each shadow receiver from
which lights it receives shadow, and for every combination of
light and shadow receiver — which shapes occlude the light.
We think this is too burdensome for typical uses, and stands in
the direct opposition to the goal of easily enabling shadows
on the existing scenes.

Our extensions allow to choose only lights on the shadow re-
ceivers. Configuration of shadow casters is global, that is an
object either casts a shadow on all the shadow receivers, or
doesn’t cast a shadow at all.

2. Flexibility of what shadow method is used. Our extensions,
as well as BS Contact and Octaga, are strongly directed at the
shadow mapping algorithms. Our extensions are also usable
for other shadow approaches, as long as the author uses only
the most encouraged Appearance.receiveShadows
and the Appearance.shadowCaster extensions.

The important point here is that our receiveShadows field
can work really well, so many scenes are fine using it and thus
work with any shadow algorithm.

3. Natural behavior for authors. Not much technical knowl-
edge should be required from the authors, and the shadow
properties should be declared where they feel most natural.
We think that our choice of extending the shadow receivers
is the most natural here — receiving the shadow changes the
look of given shape.

We also note that this nicely fits with natural placement for
implementors. In case of shadow maps, receiving the shad-
ows requires shading the object differently.

Now that we summarized what we want, let’s quickly review where
we can place shadow information in the X3D scene:

1. Completely separate nodes, like a special Shadow node, do
not encourage authors to use shadows widely.

2. Requiring much configuration of the shadow casters seems
unnecessary, because most shadows algorithms easily account
for a large number of shadow casters. This is true for shadow
maps, as well as shadow volumes and ray testing. The only
exception could be plane-projected shadows, but these depend
heavily on the number of shadow receivers as well.

So the best treatment of shadow casters is to make everything,
by default, a shadow caster, and do not require any configu-
ration for them. Algorithms that are internally unable to cope
with some shadow casters can simply ignore them. For exam-
ple, shadow volumes implementations using classic silhouette
optimization may want to detect and ignore shapes that are not
2-manifold.

3. Placing information at light sources is natural, and our exten-
sions put some information there.

For shadow algorithms that, in their basic implementation,
make everything a shadow receiver (like multi-pass shadow
volumes, or shadow ray testing), it would be possible to make
everything a shadow receiver by default (and thus, do not
require any shadow receivers configuration). This could be
a working solution for small, simple scenes. But for large
scenes, we need more flexibility to limit the shadows.

4. Thus, the explicit configuration of shadow receivers seems
like a best choice for us. It is flexible, and still simple enough
to be widely used on many shapes in the scene. Authors just
add lights to the Appearance.receiveShadows field in
the simplest case.

Moreover, receiving shadows changes the look of the given
shape. This is a very practical insight, because it means that
usage of shaders on shadow receivers is limited. For shadow
maps, shadow receiver must use the appropriate shader. When
using the receiveShadows field, author must be aware
that browser may force usage of internal shaders. When plac-
ing GeneratedShadowMap on the textures list the au-
thor must be aware that he must write his own shader to get
really nice shading results.

4 X3D extensions

We present now the actual X3D extensions to enable shadow maps
and projective texturing. We propose to add a couple of new fields
to the existing nodes, and some new nodes.

The specification of nodes and fields in this section is similar to the
X3D specification conventions:

FieldType [in,out] fieldName <default value>
# optional range of allowed values
# for the field above

4.1 Define shadow receivers

In the simplest case, to enable the shadows authors must only use
this field:

New field for the Appearance node
MFNode [] receiveShadows []

# [X3DLightNode] list



Each light present in the receiveShadows list will cast shadows
on the given shape. That is, contribution of the light source will be
scaled down if the light is occluded at a given fragment. The whole
light contribution is affected, including the ambient term. We do
not make any additional changes to the X3D lighting model. The
resulting fragment color is the sum of all the visible lights (visible
because they are not occluded, or because they don’t cast shadows
on this shape), modified by the material emissive color and fog,
following the X3D specification.

This is the simplest extension to enable shadows. It is suitable for
any shadows implementation, not only shadow maps.

Authors should note that browsers may use internal shaders to pro-
duce nice shading for shadow receivers. Custom author shaders
may be ignored. If you want to apply your own shaders over shadow
receivers, you have to use the lower-level nodes described next in-
stead of this.

4.2 Overview of the lower-level extensions

The following extensions make it possible to precisely setup and
control shadow maps. Their use requires a basic knowledge of the
shadow map approach, and they are necessarily closely tied to the
shadow map workflow. On the other hand, they allow the author
to define custom shaders for the scene and control every important
detail of the shadow mapping process.

These lower-level extensions give a complete and flexible system to
control the shadow maps, making the receiveShadows feature
only a shortcut for the simplest setup.

We make a shadow map texture by the GeneratedShadowMap
node, and project it on the shadow receiver by
ProjectedTextureCoordinate. An example X3D
code (in classic encoding) for a shadow map setup:

DEF MySpot SpotLight {
location 0 0 10
direction 0 0 -1
projectionNear 1
projectionFar 20

}

Shape {
appearance Appearance {
texture GeneratedShadowMap {
light USE MySpot
update "ALWAYS"

}
}
geometry IndexedFaceSet {
texCoord ProjectedTextureCoordinate {
projector USE MySpot

}
# ... other IndexedFaceSet fields

}
}

4.3 Light sources parameters

The motivation behind the extensions in this section is that we want
to use light sources as cameras. This means that lights need addi-
tional parameters to specify projection details.

To every X3D light node (DirectionalLight, SpotLight,
PointLight) we add new fields:

Additional fields for every X3DLightNode
SFFloat [in,out] projectionNear 0
# must be >= 0

SFFloat [in,out] projectionFar 0
# must be > projectionNear, or = 0

SFVec3f [in,out] up 0 0 0
SFNode [] defaultShadowMap NULL
# [GeneratedShadowMap]

The fields projectionNear and projectionFar specify the
near and far values for the projection used when rendering to the
shadow map texture. These are distances from the light posi-
tion, along the light direction. You should always try to make
projectionNear as large as possible and projectionFar
as small as possible, this will make depth precision better (keeping
projectionNear large is more important for this). At the same
time, your projection range must include all your shadow casters.

The field up is the ,,up” vector of the light camera when cap-
turing the shadow map. This is used only with non-point lights
(DirectionalLight and SpotLight). Although we know
the direction of the light source, but for shadow mapping we also
need to know the ,,up” vector to have camera parameters fully de-
termined. This vector must be adjusted by the implementation to be
perfectly orthogonal to the light direction, this allows user to avoid
explicitly giving this vector in many cases. Results are undefined
only if this vector is (almost) parallel to the light direction.

These properties are specified at the light node, because both
shadow map generation and texture coordinate calculation must
know them, and use the same values (otherwise results would not
be of much use).

The field defaultShadowMap is meaningful only when some
shape uses the receiveShadows feature. This will be described
in the later section 4.7.

DirectionalLight gets additional fields to specify orthogo-
nal projection rectangle (projection XY sizes) and location for the
light camera. Although directional light is conceptually at infinity
and doesn’t have a location, but for making a texture projection we
actually need to define the light’s location.

Additional fields for the DirectionalLight node
SFVec4f [in,out] projectionRectangle

0 0 0 0 # left, bottom, right, top;
# must be left < right and bottom < top,
# or all zero

SFVec3f [in,out] projectionLocation 0 0 0
# affected by node’s transformation

SpotLight gets additional field to explicitly specify a perspective
projection angle.

Additional fields for the SpotLight node
SFFloat [in,out] projectionAngle 0

Leaving projectionAngle at the default zero value is equiv-
alent to setting projectionAngle to 2 * cutOffAngle.
This is usually exactly what is needed. Note that the
projectionAngle is the vertical and horizontal field of view
for the square texture, while cutOffAngle is the angle of the



Figure 3: Spot light cone angle matching with the projected texture angle

half of the cone (that’s the reasoning for ∗2 multiplier). Using 2
* cutOffAngle as projectionAngle makes the perceived
light cone fit nicely inside the projected texture rectangle. It also
means that some texture space is essentially wasted — we cannot
perfectly fit a rectangular texture into a circle shape.

Figure 3 shows how a light cone fits within the projected texture.

4.4 Automatically generated shadow maps

Now that we can treat lights as cameras, we want to render shadow
maps from the light sources. The rendered image is stored as a
texture, represented by a new node:

GeneratedShadowMap : X3DTextureNode
SFNode [in,out] metadata NULL

# [X3DMetadataObject]
SFString [in,out] update "NONE"

# ["NONE" | "ALWAYS" | "NEXT FRAME ONLY"]
SFInt32 [] size 128
SFNode [] light NULL
# [X3DLightNode] (any light node) allowed

SFFloat [in,out] scale 1.1
SFFloat [in,out] bias 4.0
SFString [] compareMode
"COMPARE R LEQUAL" # ["COMPARE R LEQUAL"
# | "COMPARE R GEQUAL" | "NONE"]

The update field determines how often the shadow map should
be regenerated. It is analogous to the update field in the standard
GeneratedCubeMapTexture node.

"NONE" means that the texture is not generated. It is the default
value (because it’s the most conservative, so it’s the safest
value).

"ALWAYS" means that the shadow map must be always accurate.
Generally, it needs to be generated every time shadow caster’s

geometry noticeably changes. The simplest implementation
may just render the shadow map at every frame.

"NEXT FRAME ONLY" says to update the shadow map at the next
frame, and afterwards change the value back to "NONE". This
gives the author an explicit control over when the texture is
regenerated, for example by sending "NEXT FRAME ONLY"
values by a Script node.

The field size gives the size of the (square) shadow map texture
in pixels.

The field light specifies the light node from which to generate the
map. Ideally, implementation should support all three X3D light
source types. NULL will prevent the texture from generating. It’s
usually comfortable to "USE" here some existing light node, in-
stead of defining a new one.

Note that the light node instanced in-
side the GeneratedShadowMap.light or
ProjectedTextureCoordinate.projector fields
isn’t considered a normal light, that is it doesn’t shine any-
where. It should be defined elsewhere in the scene to actually
act like a normal light. Moreover, it should not be instanced
many times (outside of GeneratedShadowMap.light and
ProjectedTextureCoordinate.projector), as then it’s
unspecified from which view we will generate the shadow map.

Fields scale and bias are used to offset the scene rendered to
the shadow map. This avoids the precision problems inherent in
the shadow maps comparison. In short, increase them if you see a
strange noise appearing on the shadow casters (but don’t increase
them too much, or the shadows will move back). You may increase
the bias a little more carelessly (it is multiplied by a constant
implementation-dependent offset, that is usually something very
small). Increasing the scale has to be done a little more carefully
(it’s effect depends on the polygon slope).

Figure 4 shows the effects of various scale and bias values.

For an OpenGL implementation that offsets the geometry rendered



Figure 4: Various bias/scale values. On the left, they are too small and the shadow caster is erroneously considered to cast shadow on itself
(notice the noise on the tower). On the right, they are too large and the shadow is pushed back and shrunk (notice how it doesn’t touch
precisely the bottom of the tower). In the middle, they are just right (use default values).

into the shadow map, scale and bias are an obvious parame-
ters (in this order) for the glPolygonOffset call. Other imple-
mentations are free to ignore these parameters, or derive from them
values for their offset methods.

Field compareMode allows to additionally do depth compari-
son on the texture. For texture coordinate (s, t, r, q), compare
mode allows to compare r/q with texture(s/q, t/q). Typically
combined with the projective texture mapping, this is the moment
when we actually decide which screen pixel is in the shadow and
which is not. Default value COMPARE R LEQUAL is the most use-
ful value for standard shadow mapping, it generates 1 (true) when
r/q <= texture(s/q, t/q), and 0 (false) otherwise. Recall from
the section 2 that, theoretically, assuming infinite shadow map reso-
lution and such, r/q should never be smaller than the texture value.

When the compareMode is set to NONE, the comparison is not
done, and depth texture values are returned directly. This is
very useful to visualize shadow maps, for debug and demonstra-
tion purposes — you can view the texture as a normal grayscale
(luminance) texture. In particular, problems with tweaking the
projectionNear and projectionFar values become easily
solvable when you can actually see how the texture contents look.

For OpenGL implementations, the most natural format for
a shadow map texture is the GL DEPTH COMPONENT (see
ARB depth texture). This makes it ideal for typical
shadow map operations. For GLSL shader, this is best
used with sampler2DShadow (for spot and directional lights)
and samplerCubeShadow (for point lights). Unless the
compareMode is NONE, in which case you should treat them
like a normal grayscale textures and use the sampler2D or the
samplerCube types.

4.5 Projective texture mapping

We propose a new ProjectedTextureCoordinate node:

ProjectedTextureCoordinate : X3DTextureCoordinateNode
SFNode [in,out] projector NULL

# [SpotLight, DirectionalLight,
# X3DViewpointNode]

This node generates texture coordinates, much like the standard
TextureCoordinateGenerator node1. More precisely, a

1The reasoning for inventing a new node, instead of extending the
existing TextureCoordinateGenerator, is that the projector
field would not be useful for other TextureCoordinateGenerator
modes.

texture coordinate (s, t, r, q) will be generated for a fragment that
corresponds to the shadow map pixel on the position (s/q, t/q),
with r/q being the depth (distance from the light source or the
viewpoint, expressed in the same way as depth buffer values are
stored in the shadow map). In other words, the generated texture
coordinates will contain the actual 3D geometry positions, but ex-
pressed in the projector’s frustum coordinate system. This cooper-
ates closely with the GeneratedShadowMap.compareMode
= COMPARE R LEQUAL behavior, see the previous subsection.

This can be used in all situations when the light or the viewpoint act
like a projector for a 2D texture. For shadow maps, projector
should be a light source.

When a perspective Viewpoint is used as the projector, we
need an additional rule. That’s because the viewpoint doesn’t ex-
plicitly determine the horizontal and vertical angles of view, so it
doesn’t precisely define a projection. We resolve it as follows:
when the viewpoint that is not currently bound is used as a projec-
tor, we use Viewpoint.fieldOfView for both the horizontal
and vertical view angles. When the currently bound viewpoint is
used, we follow the standard Viewpoint specification for calcu-
lating view angles based on the Viewpoint.fieldOfView and
the window sizes. We feel that this is the most useful behavior for
scene authors.

When the geometry uses a user-specified vertex shader, the imple-
mentation should calculate correct texture coordinates on the CPU.
This way shader authors still benefit from the projective texturing
extension. If the shader author wants to implement projective tex-
turing inside the shader, he is of course free to do so, there’s no
point in using ProjectedTextureCoordinate at all then.

Note that this is not suitable for point lights. Point lights do not
have a direction, and their shadow maps can no longer be single 2D
textures. Instead, they must use six 2D maps. For point lights, it’s
expected that the shader code will have to do the appropriate texture
coordinate calculation: a direction to the point light (to sample the
shadow map cube) and a distance to it (to compare with the depth
read from the texture).

4.6 Define shadow casters

By default, every Shape in the scene casts a shadow. This is the
most common setup for shadow maps. However it’s sometimes
useful to explicitly disable shadow casting (blocking of the light)
for some tricky shapes. For example, this is usually desired for
shapes that visualize the light source position. For this purpose we
extend the Appearance node:



Additional fields for the Appearance node
SFBool [in,out] shadowCaster TRUE

Note that if you disable shadow casting on your shadow receivers
(that is, you make all the objects only casting or only receiving the
shadows, but not both) then you avoid some offset problems. The
bias and scale parameters of the GeneratedShadowMap be-
come less crucial then.

This field may also be used by other shadow approaches imple-
mented in the X3D browsers. For example, shadow volumes or
ray-tracers could use it too.

4.7 How the receiveShadows field maps to the lower-
level extensions

Placing a light on the receiveShadows list is equiv-
alent to adding the appropriate GeneratedShadowMap
to the shape’s textures, and adding the appropriate
ProjectedTextureCoordinate to the geometry
texCoord field. Also, receiveShadows makes the right
shading (for example by shaders) automatically used.

In fact, the receiveShadows feature may be implemented
by a simple transformation of the X3D node graph. Since the
receiveShadows and defaultShadowMap fields are not ex-
posed (they do not have accompanying input and output events)
it’s enough to perform such transformation once after loading the
scene. Note that the texture nodes of the shadow receivers may
have to be internally changed to multi-texture nodes during this op-
eration.

An author may also optionally specify a GeneratedShadowMap
node inside the light’s defaultShadowMap field. See the
section 4.3 for defaultShadowMap declaration. Leaving the
defaultShadowMap as NULL means that an implicit shadow
map with default browser settings should be generated for this light.
This must behave like update was set to ALWAYS.

In effect, to enable the shadows the author must merely specify
which shapes receive the shadows (and from which lights) by the
Appearance.receiveShadows field. This way the author
doesn’t have to deal with lower-level tasks:

1. Using GeneratedShadowMap nodes.
2. Using ProjectedTextureCoordinate nodes.
3. Writing own shaders.

Figure 5: Close up shadows on the tree. Notice that leaves (mod-
eled by alpha-test texture) also cast correct shadows.

5 Shading with the shaders

When the shape receiving shadows doesn’t have any shaders as-
signed in the X3D file, we do not require much from the implemen-
tation. We only insist that shadows must be visualized in some way,
from at least one shadow map. In the simplest case, the computed
pixel color may be simply set to the pure black when it falls in the
shadow. This way even implementations for old GPUs, that have
only fixed-function pipeline available, may satisfy our extensions
specification.

The encouraged method to make the shadows look nice is to use
the shaders. This way shadows have high-quality look, and the
shading doesn’t require any extra rendering passes. The X3D au-
thor has full power of customizing the shadows look when us-
ing lower-level GeneratedShadowMap approach. When the
receiveShadows field is used, browsers are strongly encour-
aged to use internal shaders for nice shading.

Below we present simple examples how to use GLSL (OpenGL
Shading Language) shaders to make the shadows look nice. Note
that we use GLSL language just as an example. Our extensions
are not OpenGL specific, and any shading language is usable
with our shadow maps. We extend the X3D specification of the
shaders component to pass GeneratedShadowMap to shader’s
sampler2DShadow type (for spot and directional lights) and
samplerCubeShadow type (for point lights). Unless they have
compareMode set to NONE, in which case they map (appropri-
ately) to the sampler2D or the samplerCube. This applies to
all shader languages mentioned in the X3D specification: OpenGL
shading language (GLSL) binding, Microsoft high level shading
language (HLSL) binding and nVidia Cg shading language bind-
ing.

5.1 Basics

In the simplest case, we sample the 2D depth texture using the
shadow2DProj(shadowMap, gl TexCoord[0]) call. A
complete GLSL fragment shader looks like this:

uniform sampler2DShadow shadowMap;
void main(void)
{

float shadow =
shadow2DProj(shadowMap, gl_TexCoord[0]).r;

gl_FragColor = gl_Color * shadow;
/* add some ambient term */
gl_FragColor += vec4(0.25, 0.25, 0.25, 1);

}

Figure 6: The previous tree once again, this time with percentage
closer filtering (16 samples). Note the soft look of the shadows.



This is a very simple shader, and a very crude one. Next we will
describe how to improve it.

5.2 Improvements

The shader code in the previous section scales the gl Color value
by the shadow amount of a single light. This isn’t a correct solution,
as gl Color (calculated by the vertex shader or the fixed-function
pipeline) contains the contribution from all scene lights.

A better solution would be to calculate the whole lighting inside the
fragment shader 2. Then the shadow value may be used to scale
only the contribution of the appropriate light. Following this idea,
we could also use several shadow maps, each one from a different
light source. Shader could then calculate lighting with correctly
combined shadows from all the light sources.

Another problem is that the shadow map may be sampled with po-
sitions outside of the (0, 0) − (1, 1) square. This isn’t a problem
for spot lights since they do not shine outside of their cone, so the
value of shadow there doesn’t matter — it will be multiplied by
black color anyway. But for directional lights it remains important.
Outside of the (0, 0) − (1, 1) square, the clamping of the texture
coordinates will stretch the shadows over unrelated scene parts. We
would like to consider everything that is outside of the shadow map
as always in the shadow. This may be done by inserting (before the
shadow value is used in the multiplication) the following check
into the previous shader code:

vec2 shadowMapCoord =
gl_TexCoord[1].st / gl_TexCoord[1].q;

if (shadowMapCoord.s < 0.0 ||
shadowMapCoord.s > 1.0 ||
shadowMapCoord.t < 0.0 ||
shadowMapCoord.t > 1.0)

shadow = 0.0;

5.3 Percentage closer filtering

When the light is far from the shadow receiver, and the user’s
avatar looks at the shadow closely, then a single shadow map
pixel corresponds to many pixels on the screen. This means that
the shape of the shadow map pixels is unfortunately visible on
the screen. Percentage closer filtering [Bunnell and Pellacini
2004] hides these artifacts by averaging the results of the shadow
tests. A trivial implementation inside GLSL shader may be seen
here: https://vrmlengine.svn.sourceforge.net/
svnroot/vrmlengine/trunk/demo_models/shadow_
maps/shadow_map_pcf4.fs.

6 Implementation notes

An open-source implementation of these extensions is available in
our engine on http://vrmlengine.sourceforge.net/.
You can test it for example with our view3dscene tool.
An example VRML/X3D files with the shadow maps and
the GLSL shaders are available in our test suite on http:
//vrmlengine.sourceforge.net/demo_models.php
(inside shadow maps/ subdirectory).

Our implementation uses the basic OpenGL tools: we render to
the depth texture using the framebuffer object, and we set up pro-
jective texturing by OpenGL glTexGen procedures. We per-

2Or pass contributions from the separate lights as separate variables from
the vertex shader.

form the comparison to determine if the shadows are black by the
ARB shadow OpenGL extension. Everything needed is available
in pretty much every sensible OpenGL implementation (even in the
pure software version of Mesa3D).

The case when update is set to ALWAYS is optimized. The
shadow maps are regenerated only if the geometry of the scene
changes. This means that mere camera movements, or animation of
the materials or textures do not cause an unnecessary update over-
head. An other potential optimization would be to update shadow
maps only once for a couple of frames, or once for a fraction of a
second.

We do not handle shadow maps from PointLight sources yet.

The receiveShadows field is implemented as a transformation
of the X3D nodes graph. You can try it by the view3dscene
menu option Handle receiveShadows by shadow maps. Currently,
the effect of this transformation may be visible to the author in some
uncommon situations, like when using a script traversing the nodes
graph.

We have also implemented the shadow volumes algorithm [Kam-
burelis 2006] and a software ray-tracer. They both honor the
shadowCaster field. Our ray-tracer treats everything as a
shadow receiver. Our current shadow volumes implementation is
slightly limited, and requires special lights setup, also treating ev-
erything as a shadow receiver. Non-manifold shadow casters are
detected but currently still used by the shadow volumes implemen-
tation — this is useful for special non-manifold shapes in some
scenes, at the risk of showing ugly artifacts from particular camera
angles.

7 Conclusion

We have presented a number of extensions to the existing X3D
specification. Together, they allow the authors to control the
shadow maps behavior on the 3D scenes. Authors can also use
projective texturing as an independent feature, for example to cast
normal colored textures from the light sources or viewpoints. Gen-
erated shadow map textures can be also visualized as a grayscale
2D textures, which is very useful for debugging shadow map depth
problems.

Most important (and scene-dependent) parameters of the shadow
map generation can be set in the X3D code, while the implemen-
tation is delegated to hide most of the dirty work. Natural imple-
mentation in both fixed-function and shader pipelines is possible.
Shadow maps defined this way cooperate nicely with user’s custom
shader code.

8 Future work

Shadow mapping, as well as many other effects, would benefit
from X3D browser being able to use it’s own internal shader code.
For example, advanced bump mapping variants (like steep parallax
bump mapping with self-shadowing [McGuire and McGuire 2005])
can be sensibly implemented only using the shaders. Current imple-
mentation of the bump mapping extension in our engine forces the
author to make a difficult choice: either easily ,,turn on the bump
mapping” (our bump mapping extensions require only to provide
the height and normal maps [Kamburelis 2008]) and resign from
custom shaders or resign from using our comfortable extensions
and implement bump mapping yourself with own shaders. The sim-
ple receiveShadows extension described in the section 4.1 has
the same disadvantage: browser’s internal shaders have to override
author’s custom shaders in this case.

https://vrmlengine.svn.sourceforge.net/svnroot/vrmlengine/trunk/demo_models/shadow_maps/shadow_map_pcf4.fs
https://vrmlengine.svn.sourceforge.net/svnroot/vrmlengine/trunk/demo_models/shadow_maps/shadow_map_pcf4.fs
https://vrmlengine.svn.sourceforge.net/svnroot/vrmlengine/trunk/demo_models/shadow_maps/shadow_map_pcf4.fs
http://vrmlengine.sourceforge.net/
http://vrmlengine.sourceforge.net/demo_models.php
http://vrmlengine.sourceforge.net/demo_models.php


It’s worth exploring how to merge such systems. Ideally, author
should be able to write his own shader code, and at the same time
the implementation must be able to implement some effects through
internal shaders. Author must have the ability to selectively use or
override all the effects of the browser.

A flexible approach to cooperate between user and browser shader
code (preferably an approach mapping to the various shader lan-
guages: GLSL, Cg, HLSL, also CgFX) seems like a mighty exten-
sion for X3D.
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